| 研究生: | 張心瑜 Chang, Hsin-Yu | 
|---|---|
| 論文名稱: | 基於進化計算演繹法的一種嶄新性能指標強健度分析:以卡爾曼濾波為例 A Novel Approach for the Robustness Analysis of the Performance Index based on the Evolutionary Algorithm: A Case Study on Kalman Filtering | 
| 指導教授: | 郭淑美 Guo, Shu-Mei | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering | 
| 論文出版年: | 2012 | 
| 畢業學年度: | 100 | 
| 語文別: | 英文 | 
| 論文頁數: | 53 | 
| 中文關鍵詞: | 強健度分析 、最大化─最小化問題 、進化計算演繹法 、差分進化演算法 | 
| 外文關鍵詞: | robustness analysis, max-min problem, evolutionary algorithm, differential evolutionon | 
| 相關次數: | 點閱:96 下載:1 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
基於進化計算演繹法,本論文提出一種嶄新的性能指標強健度分析方法,並探討了應用於卡爾曼濾波的實際例子。首先,提出一個進化計算演繹法,求存在有界不確定性、離散且具有時間不變性的可實作最佳卡爾曼濾波器,使得此濾波器的預期最大誤差最小化,而這可以被表示為一個「最小化─最大化」問題。其次,提出改進的「最大化─(最小化─最大化)」差分進化演算法(differential evolution, DE)與「最小化─(最小化─最大化)」差分進化演算法,以求解當濾波器存在著對於某些成分的加權/干擾項時的效能指標強健度邊界與對應的最差狀況之系統參數。前述「最大化─(最小化─最大化)」與「最小化─(最小化─最大化)」問題,可視為本文所提出的改良型「最大化─最小化」與「最小化─最小化」問題的延伸應用。和之前的方法比較,本研究所提出的改良型「最大化─最小化」與「最小化─最小化」演算法可改進精確度、速度與強健度,且本研究提出的演算法不失一般性,可應用在卡爾曼濾波以外的地方。
In this thesis, a novel approach to the robustness analysis of the performance index based on the evolutionary algorithm (EA) with a case study on Kalman filtering is proposed. First, an EA-based filtering algorithm to find a practically implementable “best” Kalman filter is proposed for a linear discrete-time time-invariant plant with bounded uncertainties, such that the maximum filtering error is minimized, denoted as the min-max problem. The improved max-(min-max) differential evolution (DE) and the improved min-(min-max) DE are then proposed to determine the robustness bound of the performance index when some components of the practically implementable “best” Kalman filter are weighted/perturbed in some specified domain. The applications of the proposed max-(min-max) and min-(min-max) DEs to the practical Kalman filtering can be regarded as an extension of the max-min and min-min DEs proposed in this thesis, which also improve the precision, speed, and robustness more than conventional ones. The worst-case parameter set from the stochastic uncertainties is also found in this work. Without loss of generality, the proposed approach works not only for Kalman filtering, but for a wide selection of practical applications.
[1] K. I. Ko and C. L. Lin, “On the complexity of min-max optimization problems and their approximation,” Nonconvex Optimization and Its Applications, vol. 4, pp. 219-240, 1995.
[2] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-wesley, 1989.
[3] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES),” Evolutionary Computation, vol. 11, pp. 1-18, 2003.
[4] R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces,” Journal of global optimization, vol. 11, pp. 341-359, 1997.
[5] Y. Ao, H. Chi, E. Ayachi, S. Ihsen, B. Mohamed, M. H. F. Zarandi, M. Khademian, B. Minaei-Bidgoli, I. B. Türkşen, and M. Maraqa, “Differential evolution using opposite point for global numerical optimization,” Journal of Intelligent Learning Systems and Applications, vol. 4, pp. 1-19, 2012.
[6] K. Masuda, K. Kurihara, and E. Aiyoshi, “A novel method for solving min-max problems by using a modified particle swarm optimization,” IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2113-2120, 2011.
[7] G. Chen, J. Wang, and L. S. Shieh, “Interval Kalman filtering,” IEEE Transactions on Aerospace and Electronic Systems, vol. 33, pp. 250-259, 1997.
[8] S. M. Guo, L. S. Shieh, G. Chen, and N. P. Coleman, “Observer-type Kalman innovation filter for uncertain linear systems,” IEEE Transactions on Aerospace and Electronic Systems, vol. 37, pp. 1406-1418, 2001.
[9] S. M. Guo, L. S. Shieh, C. F. Lin, and N. P. Coleman, “Evolutionary‐programming‐based Kalman filter for discrete‐time nonlinear uncertain systems,” Asian Journal of Control, vol. 3, pp. 319-333, 2001.
[10] M. Sion, “On general minimax theorems,” Pacific Journal of mathematics, vol. 8, pp. 171-176, 1958.
[11] A. Petrowski, “A clearing procedure as a niching method for genetic algorithms,” IEEE International Conference on Evolutionary Computation, pp. 798-803, 1996.
[12] K. J. Astrom and B. Wittenmark, Computer-controlled Systems: Theory and Design, 3rd Edition, Prentice Hall, Englewood Cliffs, NJ, 1990.
[13] F. L. Lewis, Applied Optimal Control and Estimation, Prentice Hall PTR, 1992.
[14] X. Zhang, A. Heemink, and J. Van Eijkeren, “Performance robustness analysis of Kalman filter for linear discrete-time systems under plant and noise uncertainty,” International Journal of Systems Science, vol. 26, pp. 257-275, 1995.