| 研究生: |
陳冠辰 Chen, Guan-Chen |
|---|---|
| 論文名稱: |
整合行星齒輪式減速機直流有刷馬達之設計與分析 Design and Analysis of DC Commutator Motors with Integrated Planetary Gear Trains |
| 指導教授: |
顏鴻森
Yan, Hong-Sen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 直流有刷馬達 、行星齒輪系 、電磁分析 、有限元素分析 、機電整合 、整合設計 |
| 外文關鍵詞: | DC commutator motor, Planetary gear train, Electromagnetic analysis, Finite element analysis, Mechatronics, Integrated design |
| 相關次數: | 點閱:153 下載:30 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
馬達與齒輪減速機的搭配,廣泛應用在各類型動力應用的場合。現有設計通常是兩者分別設計與製造完成後再相互選配,存在動力的傳輸路徑較長、機器的組成元件較多、整體的安裝空間較大等固有缺點。本研究以行星齒輪系減速機與永磁式直流有刷馬達做為整合設計的對象,使其成為一體式的機電整合裝置,並從構造及功能方面構思整合設計方案。首先,依據直流有刷馬達及行星齒輪系減速機的構造特性與運動原理,歸納設計需求與限制,提出整合設計構想,並整合設計理論基礎。再者,建立一維等效磁路法之數值分析模型,以解析整合裝置的電磁特性與輸出性能,並配合有限元素分析法進行驗證。接著,說明齒輪系的設計方法,包含齒形、齒數、齒輪系構形、及齒輪強度,並提出一套有效的方法,大幅降低直流有刷馬達的頓轉扭矩及轉矩漣波,改善整合裝置的電磁與輸出特性,且可針對整合裝置的輸出特性進行分析。最後,提出一套整合設計流程,有系統的將直流有刷馬達之電磁場設計與行星齒輪系減速機的運動設計結合,並以現有設計為例,提出可行的整合裝置創新構形。由性能分析結果得知,該整合設計滿足原有設計的傳動能力,且頓轉扭矩、轉矩漣波,及軸向空間的使用,皆較現有設計有較佳的性能表現。
The combinations of electric motors and gear reducers are considered as typical examples of mechatronics, which are widely used in various power applications. The existing design strategy is to design electric motors and gear reducers independently and then integrate them within expected functions after manufactured. However, the inherent disadvantages are long power transmitting paths, redundant mechanical elements usage, and incompact workspace arrangements. This study proposes an integrated device which combines the permanent magnet DC commutator motors and planetary gear train (PGT) reducers with desired function. Based on the configurations of DC commutator motors and the kinematic structure of PGTs, the feasible design concepts and fundamental theories are successfully generated and applied subject to concluded design requirements and constraints. An one dimension equivalent magnetic circuit method is built to analyze the performances of device and is verified by the finite element analysis. The design methods for gear trains, gear profiles, numbers of gear teeth, and the gear strength are introduced. Furthermore, the feasible numbers of gear teeth for effectively reducing the cogging torque and torque ripple are presented, which improves the magnetic performances. Finally, a design process is developed to implement the integrated devices. A design example, which performs better on the cogging torque, torque ripple and the use of axial space, is illustrated.
[1] 許正和,2002,機構構造設計學,高立圖書有限公司,台北,台灣。
[2] Hanselman, D. C., 2003, Brushless Permanent-Magnet Motor Design, 2nd Edition, The Writers’ Collective, Cranston, Rhode Island.
[3] Qu, R. and Lipo, T. A., 2004, “Analysis and Modeling of Air-Gap and Zigzag Leakage Fluxes in a Surface-Mounted Permanent-Magnet Machine,” IEEE Transactions on Industry Applications, Vol. 40, No. 1, pp. 121-127.
[4] Yang, Y. P., Luh, Y. P., and Cheung, C. H., 2004, "Design and Control of Axial-Flux Brushless DC Wheel Motors for Electric Vehicles-Part I:Multi-Objective Optimal Design and Analysis, " IEEE Transactions on Magnetics, Vol. 40, No. 4, pp. 1873-1882.
[5] Yang, Y. P., Luh, Y. P., and Lee, C.M., 2002, "A Novel Design of Optimal Phase Current Waveform for an Electric Vehicle Wheel Motor," Electric Power Components and Systems, Vol.30, pp. 705-721.
[6] Hwang, C. C. and Cho, Y. H., 2001, “Effects of Leakage Flux on Magnetic Fields of Interior Permanent Magnet Synchronous Motors,” IEEE Transactions on Magnetics, Vol. 37, No. 4, pp. 3021-3024.
[7] Hwang, C. C., Chang, S. M., Pan, C. T., and Chang, T. Y., 2002, “Estimation of Parameters of Interior Permanent Magnet Synchronous Motors,” Journal of Magnetism and Magnetic Materials, Vol. 239, pp. 600-603.
[8] Tsai, W. B. and Chang, T. Y., 1996, “Magnetic Modeling of Brushless Permanent Magnet Motors with Embedded Magnets,” Proceedings of the 17th Symposium on Electrical Power Engineering, Hsinchu, Taiwan, pp. 752-756.
[9] 鄒繼斌、劉寶廷、崔淑梅、鄭萍,1998年,磁路與磁場,哈爾濱工業大學出版社,哈爾濱,中國。
[10] Huang, C. C. and Tsai, M. C., 2001, “A Novel Two-phases Spindles Motor for DVD Applications”, IEEE Transactions On Magnetics, vol. 37, pp. 3825~3820.
[11] Momen, M. F. and Datta, S., 2009 , “Analysis of Flux Leakage in a Segmented Core Brushless Permanent Magnet Motor,” IEEE Transactions on Energy Conversion, Vol. 24 , No. 1 , pp. 77-81.
[12] Lee, K. S., Debortoil, M. J., Lee, M. J., and Salon, S. J., 1991, “Coupling Finite Elements and Analytical Solution in the Airgap of Electric Machines,” IEEE Transactions on Magnetics, Vol. 27, No. 5, pp. 3955-3957.
[13] Mizutani, R. and Matsui, N., 2000, “Design and Analysis of Low-Speed, High-Torque Permanent Magnet Motors,” Electrical Engineering in Japan, Vol. 132, No. 3, pp. 48-56.
[14] Kim, T. H., Choi, J. H., Ko, K. C., and Lee, J., 2003, “Finite-Element Analysis of Brushless DC Motor Considering Freewheeling Diodes and DC Link Voltage Ripple,” IEEE Transactions on Magnetics, Vol. 39, No. 5, pp. 3274-3276.
[15] Ohnishi, T. and Takahashi, N., 2000, “Optimal Design of Efficient IPM Motor Using Finite Element Method,” IEEE Transactions on Magnetics, Vol. 36, No. 5, pp. 3537- 3539.
[16] Tsai, M. C., Weng, M. H., and Hsieh, M. F., 2002, “Computer-Aided Design and Analysis of New Fan Motors,” IEEE Transactions on Magnetics, Vol. 38, No. 5, pp. 3467-3474.
[17] Lacombe, G., Foggia, A., Marechal, Y., Brunotte, X., and Wendling P., 2007, “From General Finite-Element Simulation Software to Engineering-Focused Software: Example for Brushless Permanent Magnet Motors Design,” IEEE Transactions on Magnetics, Vol. 43, No. 4, pp. 1657-1660.
[18] Hsu, Y. S., Tsai, M. C., and Hsieh, M. F., 2008, “Novel Stator Design of Fan Motors Using Soft Magnetic Composites,” Journal of Applied Physics, Vol. 103, No. 7, Paper No. 07F109.
[19] Wrobel, R. and Mellor, P. H., 2008,“Design Considerations of a Direct Drive Brushless Machine With Concentrated Windings,” IEEE Transactions on Energy Conversion ,Vol. 23, No. 1, pp. 1-8.
[20] Yan, G. J., Hsu, L. Y., Wang, J. H., Tsai, M. C., and Wu, X. Y., 2009, “Axial-Flux Permanent Magnet Brushless Motor for Slim Vortex Pumps,” IEEE Transactions on Magnetics, Vol. 45, No. 10, pp. 4732-4735.
[21] Jahns, T. M. and Soong, W. L., 1996, “Pulsating Torque Minimization Techniques for Permanent Magnet AC Motor Drives- A Review,” IEEE Transactions on Industrial Electronics, Vol. 43, No. 2, pp. 321-330.
[22] Keyhani, A. and Studer, C. B., 1999, “Study of Cogging Torque in Permanent Magnet Machines,” Electric Machines and Power Systems, Vol. 27, pp. 665-678.
[23] Islam, R., Husain, I., Fardoun, A., and McLaughlin, K., 2009, “Permanent-Magnet Synchronous Motor Magnet Designs With Skewing for Torque Ripple and Cogging Torque Reduction,” IEEE Transactions on Industry Applications, Vol. 45, No. 1, pp. 152-160.
[24] Sakabe, S., Shinoda, Y., and Yokoyama, H., 1990, “Effect of Interpole on Cogging Torque of Two-Phase Permanent Magnet Motor,” Electrical Engineering in Japan, Vol. 110, No. 4, pp. 131-138.
[25] Rizzo, M., Savini, A., and Turowski, J., 1991, “Influence of Number of Poles on the Torque of DC Brushless Motors with Auxiliary Salient Poles,” IEEE Transactions on Magnetics, Vol. 27, No. 6, pp. 5420-5422.
[26] Goto, M. and Kobayashi, K., 1983, “An Analysis of the Cogging Torque of a DC Motor and a New Technique of Reducing the Cogging Torque,” Electrical Engineering in Japan, Vol. 103, No. 5, pp. 711-718.
[27] Zeroug, H., Boukais, B., and Saharoui, H., 2002, “Analysis of Torque Ripple in a BDCM,” IEEE Transactions on Magnetics, Vol. 38, No. 2, pp. 1293-1296.
[28] Miller, T. J. E. and Hendershot, Jr., J. R., 1994, Design of Brushless Permanent Magnet Motors, Clarendon Press, Oxford.
[29] Li, T. and Slemon, G., 1988, “Reduction of Cogging Torque in Permanent Magnet Motors,” IEEE Transactions on Magnetics, Vol. 24, No. 6, pp. 2901-2903.
[30] Eom, J. B, Hwang, S. M., Kim, T. J., Jeong, W. B., and Kang, B. S., 2001, “Minimization of Cogging Torque in Permanent Magnet Motors by Teeth Pairing and Magnet Arc Design Using Genetic Algorithm,” Journal of Magnetism and Magnetic Materials, Vol. 226, No. 2, pp. 1229-1231.
[31] Chung, T. K., Kim, S. K., and Hahn, S. Y, 1997, “Optimal Pole Shape Design for the Reduction of Cogging Torque of Brushless DC Motor Using Evolution Strategy,” IEEE Transactions on Magnetics, Vol. 33, No. 2, pp. 1908-1911.
[32] Yao, Y. D., Huang, D. R., Wang, J. C., Liou, S. H., and Wang, S. J., 1997, “Simulation Study of the reduction of Cogging Torque in Permanent Magnet Motors,” IEEE Transactions on Magnetics, Vol. 33, No. 5, pp. 4095-4097.
[33] Yao, Y. D., Huang, D. R., Wang, J. C., and Wang, S. J., 1998, “Study of a High Efficiency and Low Cogging Torque Spindle Motor,” IEEE Transactions on Magnetics, Vol. 34, No. 2, pp. 465-467.
[34] Lin, Y. K., Hu, Y. N., Lin, T. K., Lin, H. N., Chang, Y. H., Chen, C. Y., Wang, S. J., Ying, T. F., 2000, “A Method to Reduce the Cogging Torque of Spindle Motors,” Journal of Magnetism and Magnetic Materials, Vol. 209, No. 2-3, pp. 180-182.
[35] Hsu, L. Y. and Tsai, M. C., 2004, “Tooth Shape Optimization of Brushless Permanent Magnet Motors for Reducing Torque Ripples,” Journal of Magnetism and Magnetic Materials, Vol. 282, pp. 193-197.
[36] Zhu, Z. Q., Chen, J. T., Wu, L. J., and Howe, D., 2008, “Influence of Stator Asymmetry on Cogging Torque of Permanent Magnet Brushless Machines,” IEEE Transactions on Magnetics, Vol. 44, No. 11, pp. 3851-3854.
[37] Ackermann, B., Janssen, J. H. H., Sottek, R., and Steen, R. I., 1992, “New Technique for Reduction Cogging Torque in a Class of Brushless DC Motors,” IEE Proceedings-B, Vol. 339, No. 4, pp. 315-320.
[38] Ishikawa, T., and Slemon, G. R., 1993, “A Method of Reducing Ripple Torque in Permanent Magnet Motors without Skewing,” IEEE Transactions on Magnetics, Vol. 29, No. 2, pp. 2028-2031.
[39] Jiang, X., Xing, J., Li, Y., and Lu, Y., 2009, “Theoretical and Simulation Analysis of Influences of Stator Tooth Width on Cogging Torque of BLDC Motors,” IEEE Transactions on Magnetics, Vol. 45, No. 10, pp. 4601-4604.
[40] Choi.J. H., Kim, J. H., Kim, D. H., and Baek, Y. S., 2009, ”Design and Parametric Analysis of Axial Flux PM Motors With Minimized Cogging Torque,” IEEE Transactions on Magnetics, Vol. 45, No. 6, pp. 2855-2858.
[41] Freudenstein, F., 1971, “An Application of Boolean Algebra to the Motion of Epicyclic Drives,” ASME Journal of Engineering for Industry, Vol. 93B, pp. 176-182.
[42] Buchsbaum, F. and Freudenstein, F., 1970, “Synthesis of Kinematic Structure of Geared Kinematic Chains and Other Mechanisms,” Journal of Mechanisms, Vol. 5, pp. 357-392.
[43] Tsai, L. W., 1987, “An Application of the Linkage Characteristic Polynomial to the Topological Synthesis of Epicyclic Gear Trains,” ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 109, No. 3, pp. 329-337
[44] Chatterjee, G. and Tsai, L. W., 1994, “Enumeration of Epicyclic-Type Automatic Transmission Gear Trains,” Journal of Passenger Cars: Mechanical Systems, Vol. 103, pp. 1415-1426.
[45] Tsai, L. W., 1995, “An Application of Graph Theory to the Detection of Fundamential Circuits in Epicyclic Gear Trains,” Technical Report TR 1995-97, Digital Repository at the University of Maryland.
[46] Olson, D. G., Erdman, A. G., and Riley, D. R., 1991, “Topological Analysis of Single-Degree-of-Freedom Planetary Gear Trains,” ASME Journal of Mechanical Design, Vol. 113, No. 1, pp. 10-16.
[47] Hsu, C. H. and Lam, K. T., 1992, “A New Graph Representation for the Automatic Kinematic Analysis of Planetary Spur-Gear Trains,” ASME Journal of Mechanical Design, Vol. 114, No. 1, pp. 196-200.
[48] Hsu, C. H., 1993, “Synthesis of Kinematic Structure of Epicyclic Gear Trains by Admissible Graph Method,” Journal of Franklin Institute, Vol. 330, No. 5, pp. 913-927.
[49] Hsu, C. H. and Hsu, J. J., 1997, “An Efficient Methodology for the Structural Synthesis of Geared kinematic Chains,” Mechanism and Machine Theory, Vol. 32, pp. 957-973.
[50] Hsu, C. H. and Hsu, J. J., 2000, “Epicyclic Gear Trains for Automotive Automatic Transmissions,” Institution of Mechanical Engineers, Part D, Journal of Automobile Engineering, Vol. 214, pp. 523-532.
[51] Freudenstein, F. and Yang, A. T., 1972, “Kinematics and Statics of a Coupled Epicyclic Spur-Gear Train,” Mechanism and Machine Theory, Vol. 7, pp. 263-275.
[52] Hsu, C. H. and Lam, K. T., 1992, “A New Graph Representation for the Automatic Kinematic Analysis of Planetary Spur-Gear Trains,” ASME Journal of Mechanical Design, Vol. 114, No. 1, pp. 196-200.
[53] Yan, H. S. and Hsieh, L. C., 1991, “Kinematic Analysis of General Planetary Gear Trains,” Proceedings of the 8th World Congress on the Theory of Machines and Mechanisms, Prague, Czechoslovakia, Vol. 6, pp. 153-157.
[54] Hsieh, L. C. and Yan, H. S., 1992, “Generalized Kinematic Analysis of Planetary Gear Trains,” International Journal of Vehicle Design, Vol. 13, Nos. 5/6, pp. 494-504.
[55] 顏鴻森,蔡明祺,王心德,洪銀農,洪銀樹,2001,馬達與齒輪整合之裝置,中華民國發明專利第434,977號。
[56] 顏鴻森,吳益彰,2006,整合行星齒輪系之直流無刷馬達,中華民國專利第I253800號。
[57] Yan, H. S. and Wu, Y. C., 2006, “A Novel Design of a Brushless DC Motor Integrated with an Embedded Planetary Gear Train,” IEEE/ASME Transactions on Mechatronics, Vol. 11, No. 5, pp. 551-557.
[58] Yan, H. S. and Wu, Y. C., 2006, “A Novel Configuration for a Brushless DC Motor with an Integrated Planetary Gear Train,” Journal of Magnetism and Magnetic Materials, Vol. 301, No. 2, pp. 532-540.
[59] Yan, H. S. and Wu, Y. C., 2007, “Geared Motor with Planetary Gear Assembly,” U. S. Patent No. 7,211,016.
[60] 吳益彰,顏鴻森,2007,“一種新型齒輪馬達之構想設計”,第十屆全國機構與機器設計學術研討會,台中,台灣,論文編號A12。
[61] 吳益彰,顏鴻森,2008,”整合式行星齒輪系與永磁無刷馬達之構想設計”,中國機械工程學會第二十五屆全國學術研討會,彰化,台灣,論文編號csme25-493。
[62] Yan, H. S., Wang, H. T., and Liu, J. Y., 2006, “Structural Synthesis of Novel Integrated DC Gear Motors,” Mechanism and Machine Theory, Vol. 41, No. 11, pp. 1289-1305.
[63] 吳益彰,林伯煒,2008,”整合式驅動馬達與內變速器之概念設計”, Motor Express,第303期,國立成功大學馬達科技研究中心。
[64] 蔡明祺,林博正,陳添智,王明賢,2005,同心式馬達設計與控制應用,國科會專題計畫結案報告,NSC91-2213-E-006-123。
[65] 蔡明祺,林博正,杜黎蓉,2003,雙同心軸馬達,中華民國發明專利第181543號。
[66] 蔡明祺,林博正,杜黎蓉,2003,無段變速馬達,中華民國發明專利第183349號。
[67] 顏鴻森,1999,機構學,第二版,東華書局股份有限公司,台北,台灣。
[68] 許正和,2006,創造性機構設計學,高立圖書有限公司,台北,台灣。
[69] Miller, T. J. E. and Hendershot, Jr., J. R., 1994, Design of Brushless Permanent Magnet Motors, Clarendon Press, Oxford.
[70] 中國鋼鐵股份有限公司,電磁鋼捲電磁特性曲線,高雄,台灣。
[71] 賴耿陽,2006,新版實用齒輪設計法,復文書局,台南,台灣。
[72] 朱敏德,2003,機械元件設計,新文京開發出版有限公司,台北,台灣。
[73] Hwang, S.M., Eom, J.B., Hwang, G.B., Jeong, W.B., and Jung, Y.H., 2000, "Cogging Trque and Acoustic Noise Reduction in Permanent Magnet Motors by Teeth Pairing," IEEE Transactions on Magnetics, Vol.36, No.5, pp.3144-3146.
[74] Koh, C.S. and Seol, J.S., 2003, "New Cogging-Torque Reduction Method for Brushless Permanent-Magnet Motors," IEEE Transactions on Magnetics, Vol.39, No.6, pp.3503-3506.