| 研究生: |
王俐婷 Wang, Li-Ting |
|---|---|
| 論文名稱: |
消費者對虛假人工智慧資訊的感知與購買意願的關聯性:人工智慧素養的調節作用 Consumer Perceptions of Deceptive AI Information and Purchase Intentions: The Moderating Role of AI Literacy |
| 指導教授: |
呂執中
Lyu, Jr-Jung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 人工智慧 、人工智慧素養 、虛假產品資訊 、SOR 模型 |
| 外文關鍵詞: | Artificial Intelligence, AI Literacy, Deceptive Product Information, SOR Model |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著人工智慧技術受到社會關注,許多產品藉由標榜人工智慧來迎合消費者對此技術的關注,宣稱使用人工智慧技術於產品中,試圖改變消費者對產品的感知,進而增加購買意願。若消費者具備一定程度的人工智慧素養,是否能有助於辨識在市場上的虛假人工智慧資訊,進而減少受誤導的可能性。
本研究旨在探討消費者面對包含虛假人工智慧資訊之產品的購買意願是否受到感知價值、感知欺騙及人工智慧素養等因素的影響,並深入分析各因素之間的關係。本研究探討虛假人工智慧資訊如何影響消費者對產品的感知,進而改變其購買行為,有關消費者對標榜人工智慧之產品的購買意願是否受到感知價值、感知欺騙,以及人工智慧素養等因素的影響,值得深入了解。本論文延伸應用SOR模型以探討消費者對虛假廣告之感知價值、感知欺騙對購買意願的關聯性,以及人工智慧素養於其中之調節作用。
研究透過問卷調查收集資料,研究架構涵蓋五個構面,共 31 個題項,並透過網路平台發放,最終回收 321 份有效問卷。研究中使用 PLS-SEM 進行分析。研究結果顯示,廣告本身對購買意願無顯著直接影響,但能透過提升感知價值間接強化消費者的購買意願。而廣告能降低消費者對產品欺騙的認知,但感知欺騙對購買意願並未產生顯著影響。此外,人工智慧素養能增強消費者從廣告中提取價值資訊的能力,進一步強化廣告對感知價值的正向作用,卻無法有效降低感知欺騙的程度,顯示消費者即便具備一定程度的人工智慧素養,仍難以辨識誤導性資訊。
本研究結果有助於理解消費者在面對虛假人工智慧資訊時的行為反應,也能提供企業與政策制定者在推動科技資訊透明化與廣告真實性時的參考,進而共同打造更健康且可信的消費環境。同時揭示在人工智慧技術高度關注的時代下,消費者面臨資訊不對稱與識讀能力落差大的問題,凸顯提升人工智慧素養與完善虛假資訊監管制度之必要性。
In response to the growing public interest in artificial intelligence (AI), many products claim to incorporate AI technologies as a means of shaping consumer perceptions and enhancing purchase intentions. When consumers possess a certain level of AI literacy, however, they might be better equipped to identify misleading AI-related claims, thereby reducing their susceptibility to deception.
This study investigates whether consumers’ purchase intentions toward products with misleading AI claims are influenced by perceived value, perceived deception, and AI literacy. Based on an extended SOR framework, the work examines the mediating roles of perceived value and deception, and the moderating role of AI literacy. Data were collected via an online survey and analyzed using PLS-SEM.
The findings of the empirical investigation indicate that advertising does not exert a significant direct effect on purchase intention. On the other hand, advertising indirectly promotes purchase intention by enhancing perceived value, and additionally, advertising appears to reduce consumers’ perceptions of deception, although perceived deception itself does not significantly affect purchase intention. Notably, AI literacy strengthens the positive influence of advertising on perceived value by enabling consumers to be more capable of better extracting value-relevant information, yet it does not significantly mitigate perceptions of deception.
Findings of this work contribute to a deeper understanding of how consumers process misleading AI-related information and offer valuable implications for both businesses and policymakers. This study highlights the crucial role of improving AI literacy and reinforcing regulatory oversight to address information asymmetries and safeguard consumer interests in an era of increasing AI integration.
Ahmed, A. M. A., & Othman, A. K. B. (2024). The Effect of False Advertising on Consumer Online Purchase Behavior with the Mediating Effect of e-WOM: Consumers in Malaysia. Information Management and Business Review, 16(2), 115-128.
Bae, S., Liu, X., & Ng, S. (2022). We are more tolerant than I: self-construal and consumer responses toward deceptive advertising. Marketing letters, 33(2), 277-291.
Bock, D. E., Wolter, J. S., & Ferrell, O. (2020). Artificial intelligence: Disrupting what we know about services. Journal of Services Marketing, 34(3), 317-334.
Boush, D. M., Friestad, M., & Wright, P. (2015). Deception in the marketplace: The psychology of deceptive persuasion and consumer self-protection. Routledge.
Bruce, A., Nourbakhsh, I., & Simmons, R. (2002). The role of expressiveness and attention in human-robot interaction. In Proceedings 2002 IEEE international conference on robotics and automation (Cat. No. 02CH37292) (Vol. 4, pp. 4138-4142). IEEE.
Buchanan, B. G. (2005). A (very) brief history of artificial intelligence. Ai Magazine, 26(4), 53-53.
Buxbaum, O. (2016). The S-O-R-Model. In Key insights into basic mechanisms of mental activity (pp. 7-9). Springer, Cham.
Cao, D., Meadows, M., & Ma, X. (2024). Thinking fast and slow: a revised SOR model for an empirical examination of impulse buying at a luxury fashion outlet. European journal of marketing, 58(1), 342-368.
Chaouachi, S. G., & Rached, K. S. B. (2012). Perceived deception in advertising: Proposition of a measurement scale. Journal of Marketing research & Case studies, 2012, 1.
Chaudhuri, A. (2000). A macro analysis of the relationship of product involvement and information search: the role of risk. Journal of marketing theory and practice, 8(1), 1-15.
Cheng, P., & Zhang, C. (2023). Show me insides: Investigating the influences of product exploded view on consumers’ mental imagery, comprehension, attitude, and purchase intention. Journal of Retailing and Consumer Services, 70, 103168.
Darke, P. R., & Ritchie, R. J. (2007). The defensive consumer: Advertising deception, defensive processing, and distrust. Journal of marketing research, 44(1), 114-127.
Dawson, J. F. (2014). Moderation in Management Research: What, Why, When, and How. Journal of Business and Psychology, 29(1), 1-19.
Dimoka, A., Hong, Y., & Pavlou, P. A. (2012). On Product Uncertainty in Online Markets: Theory and Evidence. MIS Quarterly, 36(2), 395-426.
Doghan, M., & Albarq, A. (2022). The effects of hedonic and utilitarian values on e-loyalty: Understanding the mediating role of e-satisfaction. International Journal of Data and Network Science, 6(2), 325-334.
Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., & Eirug, A. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International journal of information management, 57, 101994.
Fan, L., Wang, Y., & Mou, J. (2024). Enjoy to read and enjoy to shop: An investigation on the impact of product information presentation on purchase intention in digital content marketing. Journal of Retailing and Consumer Services, 76, 103594.
Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of marketing research, 18(1), 39.
Fu, H., Ma, H., Bian, J., Wang, C., Zhou, J., & Ma, Q. (2019). Don’t trick me: An event-related potentials investigation of how price deception decreases consumer purchase intention. Neuroscience Letters, 713, 134522.
Gan, C., & Wang, W. (2017). The influence of perceived value on purchase intention in social commerce context. Internet research, 27(4), 772-785.
Gee, J. P. (2012). What is literacy? In Language and linguistics in context (pp. 257-264). Routledge.
Gilster, P. (1997). Digital literacy. In: Wiley Computer Pub. New York.
Gursoy, D., & Cai, R. (2025). Artificial intelligence: an overview of research trends and future directions. International Journal of Contemporary Hospitality Management, 37(1), 1-17.
Hair, J. F. (2010). Confirmatory Factor Analysis. In Multivariate Data Analysis (7th ed., pp. 661-699). Prentice Hall.
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European business review, 31(1), 2-24.
Held, J., & Germelmann, C. C. (2018). Deception in consumer behavior research: A literature review on objective and perceived deception. Projectics/Proyéctica/Projectique, 21(3), 119-145.
Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial management + data systems, 116(1), 2-20.
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the academy of marketing science, 43, 115-135.
Kamalul Ariffin, S., Mohan, T., & Goh, Y.-N. (2018). Influence of consumers’ perceived risk on consumers’ online purchase intention. Journal of research in Interactive Marketing, 12(3), 309-327.
Kim, J.-H., & Park, J.-W. (2019). The Effect of Airport Self-Service Characteristics on Passengers’ Perceived Value, Satisfaction, and Behavioral Intention: Based on the SOR Model. Sustainability, 11(19), 5352.
Kim, M. J., Lee, C.-K., & Jung, T. (2020). Exploring consumer behavior in virtual reality tourism using an extended stimulus-organism-response model. Journal of travel research, 59(1), 69-89.
Laroche, M. (2010). New developments in modeling Internet consumer behavior: Introduction to the special issue. Journal of Business Research, 63(9-10), 915-918.
Laupichler, M. C., Aster, A., & Raupach, T. (2023). Delphi study for the development and preliminary validation of an item set for the assessment of non-experts' AI literacy. Computers and Education: Artificial Intelligence, 4, 100126.
Laupichler, M. C., Aster, A., Schirch, J., & Raupach, T. (2022). Artificial intelligence literacy in higher and adult education: A scoping literature review. Computers and Education: Artificial Intelligence, 3, 100101.
Li, L., Luo, B., Sun, Y., & Zhu, F. (2023). The influence mechanism of green advertising on consumers’ intention to purchase energy-saving products: Based on the SOR model. JUSTC, 53(8), 0802.
Lim, J. S., Chock, T. M., & Golan, G. J. (2020). Consumer perceptions of online advertising of weight loss products: the role of social norms and perceived deception. Journal of Marketing Communications, 26(2), 145-165.
Lin, H.-C., Bruning, P. F., & Swarna, H. (2018). Using online opinion leaders to promote the hedonic and utilitarian value of products and services. Business horizons, 61(3), 431-442.
Long, D., & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. In Proceedings of the 2020 CHI conference on human factors in computing systems (pp. 1-16).
Luo, B., Sun, Y., Shen, J., & Xia, L. (2020). How does green advertising skepticism on social media affect consumer intention to purchase green products? Journal of consumer behaviour, 19(4), 371-381.
Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology. MIT Press.
Mikalef, P., Giannakos, M., & Pateli, A. (2013). Shopping and Word-of-Mouth Intentions on Social Media. Journal of theoretical and applied electronic commerce research, 8(1), 17-16.
NAZZAL, A., THOYIB, A., ZAIN, D., & HUSSEIN, A. S. (2021). The influence of digital literacy and demographic characteristics on online shopping intention: An empirical study in Palestine. The Journal of Asian Finance, Economics and Business, 8(8), 205-215.
Ng, D. T. K., Leung, J. K. L., Chu, S. K. W., & Qiao, M. S. (2021). Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence, 2, 100041.
Ostrom, A. L., Fotheringham, D., & Bitner, M. J. (2019). Customer acceptance of AI in service encounters: understanding antecedents and consequences. Handbook of service science, volume II, 77-103.
Parikh, P. M. (2024). Artificial Intelligence: ChatGPT to Artificial Intelligence Washing. Journal of Mahatma Gandhi University of Medical Sciences and Technology, 8(1), 1-4.
Park, S., Jun, J., & Park, H. (2017). What factors affect to curation commerce website loyalty intention: The mediating effects of perceived deception. Quality innovation prosperity, 21(3), 95-113.
Paterson, J. M. (2023). Misleading AI: Regulatory Strategies for Transparency in Information Intermediary Tools for Consumer Decision-Making. Loyola Consumer Law Review.
Pavlou, P. A., & Gefen, D. (2005). Psychological Contract Violation in Online Marketplaces: Antecedents, Consequences, and Moderating Role. Information systems research, 16(4), 372-399.
Peña-García, N., Gil-Saura, I., Rodríguez-Orejuela, A., & Siqueira-Junior, J. R. (2020). Purchase intention and purchase behavior online: A cross-cultural approach. Heliyon, 6(6).
Rathee, P., Sehrawat, R., Rathee, P., Khatkar, A., Akkol, E. K., Khatkar, S., Redhu, N., Türkcanoğlu, G., & Sobarzo-Sánchez, E. (2023). Polyphenols: natural preservatives with promising applications in food, cosmetics and pharma industries; problems and toxicity associated with synthetic preservatives; impact of misleading advertisements; recent trends in preservation and legislation. Materials, 16(13), 4793.
Samoili, S., Cobo, M. L., Gómez, E., De Prato, G., Martínez-Plumed, F., & Delipetrev, B. (2020). AI Watch. Defining Artificial Intelligence. Towards an operational definition and taxonomy of artificial intelligence. P. O. o. t. E. Union.
Sarılgan, A. E., Şahap, A., Bakır, M., & Süleç, H. (2022). The impact of advertising creativity on purchase intention in the airline industry: A stimulus-organism-response (SOR) perspective. European Journal of Tourism Research, 30, 3014-3014.
Schmuck, D., Matthes, J., & Naderer, B. (2018). Misleading consumers with green advertising? An affect–reason–involvement account of greenwashing effects in environmental advertising. Journal of Advertising, 47(2), 127-145.
Seele, P., & Schultz, M. D. (2022). From greenwashing to machinewashing: a model and future directions derived from reasoning by analogy. Journal of Business Ethics, 178(4), 1063-1089.
Shi, R., Wang, M., Liu, C., & Gull, N. (2023). The Influence of Short Video Platform Characteristics on Users’ Willingness to Share Marketing Information: Based on the SOR Model. Sustainability, 15(3), 2448.
Steinbauer, G., Kandlhofer, M., Chklovski, T., Heintz, F., & Koenig, S. (2021). A differentiated discussion about AI education K-12. KI-Künstliche Intelligenz, 35(2), 131-137.
Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach's alpha. Int J Med Educ, 2, 53-55.
Vanderford, R. (2023). SEC Head Warns Against 'AI Washing,' the High-Tech Version of 'Greenwashing'; Agency head Gary Gensler cautioned businesses against peddling phony AI-related hype. The Wall Street journal. Eastern edition.
Vergura, D. T., Zerbini, C., & Luceri, B. (2020). Consumers’ attitude and purchase intention towards organic personal care products. An application of the SOR model. Sinergie Italian Journal of Management, 38(1), 121-137.
Vieira, V., Santini, F. O., & Araujo, C. F. (2018). A meta-analytic review of hedonic and utilitarian shopping values. Journal of Consumer Marketing, 35(4), 426-437.
Volschenk, J., Gerber, C., & Santos, B. A. (2022). The (in) ability of consumers to perceive greenwashing and its influence on purchase intent and willingness to pay. South African Journal of Economic and Management Sciences, 25(1), 1-9.
Wang, B., Rau, P.-L. P., & Yuan, T. (2023). Measuring user competence in using artificial intelligence: validity and reliability of artificial intelligence literacy scale. Behaviour & information technology, 42(9), 1324-1337.
Won Jeong, S., Fiore, A. M., Niehm, L. S., & Lorenz, F. O. (2009). The role of experiential value in online shopping: The impacts of product presentation on consumer responses towards an apparel web site. Internet research, 19(1), 105-124.
Xiao, B., & Benbasat, I. (2011). Product-related deception in e-commerce: A theoretical perspective. MIS Quarterly, 35(1), 169-195.
Yuan, C., Zhang, C., & Wang, S. (2022). Social anxiety as a moderator in consumer willingness to accept AI assistants based on utilitarian and hedonic values. Journal of Retailing and Consumer Services, 65, 102878.
Zeithaml, V. A. (1988). Consumer perceptions of price, quality, and value: a means-end model and synthesis of evidence. Journal of marketing, 52(3), 2-22.
Zhu, L., Li, H., Wang, F.-K., He, W., & Tian, Z. (2020). How online reviews affect purchase intention: a new model based on the stimulus-organism-response (S-O-R) framework. Aslib Journal of Information Management, 72(4), 463-488.
Zhuang, W., Luo, X., & Riaz, M. U. (2021). On the Factors Influencing Green Purchase Intention: A Meta-Analysis Approach. Frontiers in psychology, 12, 644020-644020.
校內:2030-07-31公開