| 研究生: |
林芝吟 Lin, Chih-Yin |
|---|---|
| 論文名稱: |
基於本體推論技術機台推薦系統雲端服務 Development of Machine-Tool Recommendation Cloud Service based on Ontology Inference Technology for Machine Tool Industry |
| 指導教授: |
陳朝鈞
Chen, Chao-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 雲製造 、雲端運算 、工具機 、Web服務 、本體論 |
| 外文關鍵詞: | Cloud Manufacturing, Cloud Computing, Machine Tool, Web Service, Ontology |
| 相關次數: | 點閱:90 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文設計及實作一個本體推論雲端服務系統(Ontology Inference Cloud Service, OICS),並且提出一個具有本體推論雲端服務與雲端自動縮放資源服務功能的系統框架。為了延伸我們提出的系統框架,我們開發一系列的本體推論雲端服務核心功能機制來完成OICS系統。OICS系統提供以工具機本體論為基礎的機台推薦服務,讓製程工程師透過雲端系統快速找尋合適切削工件的工具機。本體推論雲端服務系統框架提供工具機本體推論服務及動態縮放雲端運算服務資源。本體推論雲端服務核心功能機制實踐將模擬工具機行為的單機虛擬工具機軟體套件轉換成具有切削模擬與過切比對功能的雲端服務,進而來運行工具機本體推論。本論文首先介紹OICS系統,接著說明本體推論雲端服務系統框架。其次,介紹我們開發的四個核心功能機制,分別為本體資料維護模組、推理規則維護模組、本體推論模組以及雲端化封裝模組。再來,我們將OICS系統部署於微軟雲端平台,並且提供本體推論雲端服務與雲端自動縮放資源服務。最後在實驗部分,驗證本體推論雲端服務系統的可行性,進行系統整合測試與效能實驗,以驗證OICS可行性和效能良好。本文提供了利用雲端計算和本體論技術構建本體推論雲端服務為雲製造系統創建新模式。
In this paper, we design and implement an Ontology Inference Cloud Service (OICS) system and a cloud-based auto scaling mechanism. The OICS system provides Ontology inference-based machine tool recommended service, so that manufacturing process engineers can use OICS to find suitable cutting tools for cutting the specified workpiece. For supporting multi-user scenarios, the OICS can dynamically scale up and down cloud resources according to the pre-defined scaling rules. In addition, the core mechanism of cloud-based ontology inference can publish standalone packages (such as virtual machine tool package) as cloud services on the cloud platform, so that developers can integrate existing manufacturing packages in the OICS system to shorten the development period. In this thesis, we first describe the system framework of Ontology Inference Cloud Service. Secondly, we present the core mechanisms of the OICS system. Thirdly, we develop and build the OICS system in Azure, the public cloud platform of Microsoft Corp. Our system can provide users to create ontology Inference data and rules and inference on the Ontology data for finding out proper cutting tools. Finally, in the experiment, we use two scenarios to verify OICS feasibility and performance evaluation. This paper provides the use of cloud computing and Ontology inference systems for building a new knowledge application in the machine tool industry.
[1] J. Harding, K. Popplewell, and D. Cook, “Manufacturing system engineering moderator: an aid for multidiscipline project teams,” International Journal of Production Research, vol. 41, no. 9, pp. 1973-1986, 2003.
[2] A. Molina, C.A. Rodriguez, H. Ahuett, J.A. Cortés, M. Ramírez, G. Jiménez, and S. Martinez, “Next-generation manufacturing systems: key research issues in developing and integrating reconfigurable and intelligent machines,” International Journal of Computer Integrated Manufacturing, vol. 18, no. 7, pp. 525-536, 2005.
[3] P. F. Wang, and X. H. Diao, “Network Manufacturing Technology based on Cloud Computing,” Advanced Materials Research, 2013.
[4] X. Xu, “From Cloud Computing to Cloud Manufacturing,” Robotics and Computer-Integrated Manufacturing, vol. 28, pp. 75-86, 2012.
[5] Protégé-owl API, http://protege.stanford.edu/protege/3.4/docs/api/owl/
[6] J. Valentincic, and D. Brissaud, “A novel approach to presenting manufacturing knowledge on the design level in toolmaking,” Strojniski vestnik - Journal of Mechanical Engineering, vol. 51, no. 10, pp. 620-633, 2005.
[7] T. Tudorache, J. L. Vendetti, and N. F. Noy, “Web-Protege: A Lightweight OWL Ontology Editor for the Web,” Fifth OWLED Workshop on OWL: Experiences and Directions, collocated with the 7th International Semantic Web Conference (ISWC-2008), pp. 432, 2008.
[8] Microsoft Windows Azure, http://www.windowsazure.com/
[9] M.-H. Hung, Y.-C. Lin, H.-C. Huang, M.-H. Hsieh, H.-C. Yang, and F.-T. Cheng, “Development of an Advanced Manufacturing Cloud for Machine Tool Industry based on AVM Technology,” in Proceedings of the 2013 IEEE Conference on Automation Science and Engineering (CASE), pp. 195-200, Aug. 17-21, 2013.
[10] R.S. Lee, and Y.H. Lin, “Development of universal environment for constructing 5-axis virtual machine tool based on modified D-H notation and OpenGL”, Robotics and Computer-Integrated Manufacturing, 2009.
[11] R. Liu, C. Zhang, and S. Newman, “A framework and data processing for interfacing CNC with AP238,” International Journal of Computer Integrated Manufacturing, vol. 19, no. 6, pp. 516-522, 2006.
[12] S. Cochrane, K. Case, R. Young, J. Harding, and S. Dani, “Knowledge Sharing Between Design and Manufacture,” International Conference on Knowledge-Based Intelligent Information and Engineering Systems No9 (KES 2005), pp. 221-227, 2005.
[13] S. Feng, E. Song, “Preliminary design and manufacturing planning integration using intelligent agents,” Proceedings of the 7th international conference on CSCW in design, pp. 270-275, 2002.
[14] M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali, “Cloud Computing-Distributed Internet Computing for IT and Scientific Research,” IEEE Internet Computing, vol. 13, pp. 10-13, Sept.-Oct. 2009.
[15] J. Schonwalder, M. Fouquet, G. Rodosek, and I. Hochstatter, “Future Internet = content + services +management,” IEEE Communications Magazine, vol. 47, pp. 27-33, Jul. 2009.
[16] Cloud Computing Use Cases Discussion Group, “Cloud Computing Use Cases White Paper,” ver. 4, Jul. 2, 2010.
[17] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,” National Institute of Standards and Technology, vol. 53, Oct. 2009.
[18] W. Shen, Q. Hao, S. Wang, Y. Li, H. Ghenniwa, “An agent-based service-oriented integration architecture for collaborative intelligent manufacturing,” Robotics and Computer-Integrated Manufacturing, vol. 23, pp. 315-325, Jun. 2007.
[19] X. Huang, “Implementing Manufacturing Reconfiguration Methodology in Multi Agent System of Reconfigurable Assembly Line,” IEEE International Conference on Mechatronics and Automation, pp. 554-559, 2007.
[20] Sun Wei, Ma Qin-yi and Gao Tian-yi, “An Ontology-Based Manufacturing Design System,” Information Technology Journal, vol. 8, no. 5, pp. 643-656, 2009.
[21] M. Horridge, N. Drummond, J. Goodwin, A. Rector, R. Stevens, H. Wang, “The Manchester OWL Syntax,” Proceedings of the 2006 OWL Experiences and Directions Workshop (OWL-ED2006), 2006.
[22] M. J. O'Connor, H. Knublauch, S. W. Tu, B. Grossof, M. Dean, W. E. Grosso, and M. A. Musen, “Supporting Rule System Interoperability on the Semantic Web with SWRL,” Fourth International Semantic Web Conference, vol. 3729, pp. 974-986, 2005.
[23] B. Quilitz, and U. Leser, “Querying Distributed RDF Data Sources with SPARQL,” Proceedings of the European Semantic Web Conference (ESWC), vol. 5021, pp. 524-538, 2008.
[24] F.-T. Cheng, H.-C. Huang, and C.-A. Kao, “Developing an Automatic Virtual Metrology System,” IEEE Transactions on Automation Science and Engineering, vol. 9, no. 1, pp. 181-188, 2012.
[25] F.-T. Cheng, J. Y.-C. Chang, H.-C. Huang, C.-A. Kao, Y.-L. Chen, and J.-L. Peng, “Benefit Model of Virtual Metrology and Integrating AVM into MES,” IEEE Transactions on Semiconductor Manufacturing, vol. 24, no. 2, pp. 261-272, May 2011.