| 研究生: |
林婉琦 Lin, Wan-Chi |
|---|---|
| 論文名稱: |
四級銨溴鹽具一、三、四長鏈正辛基於高分子發光二極體之研究 Quaternary ammonium bromide salts with mono-, tri-, and tetra- n-octyl chains in polymer light-emitting diodes |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 四級銨鹽 、電子注入層 |
| 外文關鍵詞: | Quaternary ammonium salts, electron injection layer |
| 相關次數: | 點閱:102 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究主題包含兩大部分,第一部分利用不同四級銨溴鹽以旋轉塗佈法成膜於發光層高分子之上,作為電子注入層;第二部分利用四辛基溴化銨(tetraoctylammonium bromide , TOAB)電子注入層應用於不同金屬的研究。兩部分內容詳述如下:
在第一部分中,藉由不同四級銨溴鹽分子成膜於發光層之上作為電子注入層,發現與純鋁元件相比,可以大幅提升電子注入的效能,使得元件亮度與發光效率大幅的增加。其原因是四級銨溴鹽分子能在疏水性高分子發光層上有良好的排列,使得陰極真空能階位移,降低了電極與發光層間的電子注入能障。
在第二部分中,利用TOAB作為電子注入層,發現修飾後與未經修飾的相比,元件效果有大幅度的增加,表示其不論在何種金屬電極皆有提升電子注入能力的效果。但經TOAB修飾再鍍銀電極的元件效果,在其中是最低的,由XPS分析證實銀與TOAB的溴產生反應而形成溴化銀,進而影響到元件效率的展現。
In the first part, the different quaternary ammonium bromide salts was used as electron injection layer(EIL) in PLED. The device performances show that the devices with TOAB/Al, TrOMAB/Al, and OTrMAB/Al in PLED are significantly superior to the device with plain Al metal. Quaternary ammonium bromide salts as EIL reduce the electron injection barrier, because they have an ordered layer structure on the PF.
In the secondary section, using tetraoctylammonium bromide(TOAB) as EIL with different cathode found that the device performances show a dramatic enhancement. But the TOAB/Ag device performance is the lowest in three kinds of metal cathode. In the device performance results, it can be proved that Ag metal have some interaction with the Br of TOAB in XPS analysis.
1. M. Pope, H. Kallmann, and P. Magnante, J. Chem. Phys., 38, 2024 (1963).
2. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987)
3. R. H. Partridgea, Polymer, 24, 755 (1983).
4. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Mark, K. Mackay, R. N. Friend, P. L. Burn and A. B. Holmes, Nature, 347, 539 (1990).
5. D. Braun and A.J. Heeger, Appl. Phys. Lett., 58, 1982 (1991).
6. A. J. Heeger and D. Braun (UNIAX), WO-B 92/16023 (1992).
7. G. Grem, G. Leditzky, B. Ullrich,and G. Leising, Adv. Mater., 4, 36 (1992).
8. M. Hamguchi, H. Sawada, J. Kyokane and K. Yoshino, Chem. Lett., 25, 527 (1996)
9. S. Gaherith, H. G. Nothoper, U. Scherp and E. J. W. List, Jpn. J. Appl. Phys., 43, L891 (2004).
10. Y. H. Yao, L. R. Kung and C. S. Hsu, Jpn. J. Appl. Phys., 44, 7648 (2005).
11. S. A. VanSlyke, A. Pignate, D. Freeman, N. Redden, D. Waters, H. Kikuchi, T.Negishi, H. Kanno, Y. Nishio, M. Nakai, Proceeding of SID’02, p. 886, June 19-24, 2002, Boston, USA
12. C. C. Wu. C. I. Sturm. and A. Kahn, Appl. Phys. Lett., 70, 1348 (1997).
13. J. S. Kim, M. GranstrÖm. R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, F. Cacialli, J. Appl. Phys., 84, 6859 (1998).
14. S. K. Sol, W. K. Choi, C. H. Cheng, L. M. Leung, C. F. Kwong, Appl. Phys. A, 68, 447 (1999).
15. M. A. Baldo, D. F. O Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thomoson, S. R. Forrest, Nature, 395, 151 (1998)
16. R. Schlaf, B. A. Parkinson, P.A. Lee, K. W. Nebesny, G. Jabbour, B. Kippelen, N. Peyghambarian, N. R. Armstrong, J. Appl. Phys., 84, 6729 (1998)
17. H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. Von Seggern, M. Stobel, J. Appl. Phys., 89, 42 (2001)
18. M. G. Mason, C.W. Tang, L. S. Hung, P. Raychaudhuri, J. Madathil, D. J. Giesen, L. Yan, Q. T. Le, Y. Gao, S. T. Lee, L. S. Liao, L. F. Cheng, W. R. Salsneck, D. A. dos Santos, J. L. Bredas, J. Appl. Phys., 89, 2756 (2001)
19. L. S. Hung, R. Q. Zhang, P. He, G. Mason, J. Phys. D: Appl. Phys., 35, 103 (2002)
20. 陳怡靜、黃孝文、陳金鑫,Proceedings of Taiwan Display Conference (TDC’04), p.336, June 10-11, 2004, Taipei, Taiwan
21. T. H. Lee, J. C. A. Huang, G. L. Pakhomov, T. F. Guo, T. C. Wen, Y. S. Huang, C. C. Tsou, C. T. Chung, Y. C. Lin, and Y. J. Hsu, Adv. Funct. Mater., 18, 3036 (2008).
22. S. E. Shaheen, G. E. Jabbour, M. M. Morrell, Y. Kawabe, B. Kippelen, and N. Peyghambarian, M.-F. Nabor, R. Schlaf, E. A. Mash, and N. R. Armstrong, J. Appl. Phys., 84, 2324 (1998)
23. C.I. Wu, C.T. Lin, Y.H. Chen, and M.H. Chen, Y.J. Lu and C.C. Wu, Appl. Phys. Lett. 88, 152104 (2006)
24. Y. Li, D.Q. Zhang, L. Duan, R. Zhang, L. D. Wang, and Y. Qiu, Appl. Phys. Lett. 90, 012119 (2007)
25. J. Huang, Z. Xu, and Y. Yang, Adv. Funct. Mater., 17, 1966 (2007)
26. X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang, S. T. Zhang, Y. Q. Zhan, Z. Xu, H. J. Ding, G. Y. Zhong, H. Z. Shi, Z. H. Xiong, Y. Liu, Z. J. Wang, E. G. Obbard, and X. M. Ding, W. Huang, X. Y. Hou, J. Appl. Phys., 95, 3828 (2004)
27. S. E. Shaheen, G. E. Jabbour, M. M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M. F. Nabor, R. Schlaf, E. A. Mash, N. R. Armstrong, Appl. Phys.Lett., 84, 2324 (1998)
28. B. de Boer, A. Hadipour, M. M. Mandoc, T. van Woudenbergh, and P. W. M. Blom, Adv. Mater., 17, 621 (2005).
29. B. de Boer*, A. Hadipour, R. Foekema, T. van Woudenbergh, M. M. Mandoc, V. D. Mihailetchi, and P. W. M. Blom, Proc. SPIE, 5464, 18 (2004).
30. J. H. Seo, R. Yang, J. Z. Brzezinski, B. Walker, G. C. Bazan, and T. Q. Nguyen, Adv. Mater, 21, 1006 (2009)
31. C. Y. Lin, A. Garcia, P. Zalar, J. Z. Brzezinski, G. C. Bazan, and T. Q. Nguyen, J. Am. Chem. Soc., 114, 15786 (2010)
32. F. Huang, H. Wu, D. Wang, W. Yang, and Y. Cao, Chem. Mater., 16, 708 (2004)
33. S. N. Hsieh, S. W. Hsiao, T. Y. Chen, C. Y. Li, C. H. Lee, T. F. Guo, Y. J. Hsu, T. L. Lin, Y. Wei, T. C. Wen, J. Mater. Chem., 21, 8715 (2011)
34. G. G. Malliaras, J. R. Salem, P. J. Brock, and J. C. Scott, J. Appl. Phys., 84, 1583 (1998)
35. D. J. Abdallah, R. E. Bachman, J. Perlstein, and R. G. Weiss, J. Phys. Chem. B, 103, 9269 (1999)
36. E. Marfo-Owusu, K. Okuyama, K. Noguchi, Mol. Cryst. Liq. Cryst., 404, 85 (2003)
37. S. Kamitoria, Y. Sumimotoa, K. Vongbupnimita, K. Noguchia, K. Okuyama, Mol. Cryst. Liq. Cryst., 300, 31 (1997)
38. A. R. Campanelli and L. Scaramuzza, Acta Cryst., C42, 1380 (1986)
校內:2016-08-01公開