| 研究生: | 高平 Ping-Kao, | 
|---|---|
| 論文名稱: | 鐘擺式黏彈流體頻譜儀之研究 STUDIES OF PENDULUM-TYPE VISCOELASTIC SPECTROSCOPY FOR FLUIDS | 
| 指導教授: | 王雲哲 Wang, Yun-Che | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 工學院 - 土木工程學系 Department of Civil Engineering | 
| 論文出版年: | 2016 | 
| 畢業學年度: | 104 | 
| 語文別: | 英文 | 
| 論文頁數: | 108 | 
| 中文關鍵詞: | 複變黏滯係數 、複變剪力模數 、正切消散模數 、線黏彈力學 、共振 | 
| 外文關鍵詞: | Complex viscosity, complex shear modulus, loss tangent, linear viscoelasticity, resonance | 
| 相關次數: | 點閱:71 下載:2 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
本研究探討一實驗方式,稱之為LPVS(液體鐘擺式黏彈頻譜儀),使用固體共振子的鐘擺式振動,藉由流體與固體的交互作用,在線性黏彈液體理論的架構下,量測液體的複變黏滯係數或複變剪力模數。使用LPVS進行撓曲以及扭轉動態試驗,量測有無流體的正切消散模數與共振頻率的變化,將此變化的實驗數據進行回歸分析,配合麥斯威爾模型,建立一套獲得流體黏滯係數與複變剪力模數的步驟。在反算階段,使用已知黏滯係數之矽油,以實驗數據回歸分析方式,得到在不同情況下-液體黏稠度大於或小於50cP以共振子埋入深度為66.6%(2/3)或者100%(3/3)共四種形況下使用不同公式來獲得黏滯係數。此外可利用獲得之黏滯係數來求得複變剪力模數G'和G'。這些回歸方程式用在橄欖油與機油等液體,所量測而得之黏滯係數與文獻參考值誤差在30%以內。本研究亦對水泥、乳液、雞蛋等液體進行量測,但發現若是液體含有細微顆粒或內部會進行化學反應而改變其液體微觀結構者,本研究所提出的回歸方程式不適用。
This research is to develop an experimental method to determine the complex viscosity and complex shear modulus of liquid in the context of linear viscoelasticity. Under dynamic pure bending or torsion, the resonant frequency of the resonator/core can be accurately measured with or without the surrounding liquid. The differences in measure loss tangent and resonant frequency can be used to determine the liquid's linear viscoelastic properties with a Maxwell-like model. From the regression analysis of the experimental data, based on silicone oil whose viscosity is known, it is found that when viscosity is less than 50 cP, the regression equations are determined from experimental data for the 66%- and 100%-immersed resonator case, respectively. For viscosity is greater than 50 cP, a different set of regression equations are determined. Methodology for determining the real part and imaginary part of complex shear modulus is also developed. Based on the regression equations, the measured viscosity of olive oil and motor oil are within 30% error percentage with respect to its labeled values. In this research, Portland cement, lotion and egg white were also tested and data are reported in this thesis. It is found that if the liquids contain colloidal particles or undergo chemical reactions, such as polymerization, the regression equations identified in this research may not be suitable.
[1] J. Woirgard, Y. Sarrazin, and H. Chaumet, “Apparatus for the measurement of internal friction as a function of frequency between 10-5 and 10 hz,” Review of Scientific Instruments, vol. 48, no. 10, p. 1322, 1977.
[2] M. Brodt, L. S. Cook, and R. S. Lakes, “Apparatus for measuring viscoelastic properties over ten decades: refinements,” Journal of Materials Science, vol. 66, no. 11, pp. 5292–5297, 1995.
[3] R. Lakes, Viscoelastic Materials. Cambridge, UK: Cambridge University Press, 2009.
[4] R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics. Wiley-Interscience, 1987.
[5] C. W. Macosko, Rheology: Principles, Measurements, and Applications. Wiley-VCH, 1994.
[6] J. E. Sader, “Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope,” J. Appl. Phys., vol. 84, no. 1, p. 64, 1998.
[7] J. E. Sader, J. W. M. Chon, and P. Mulvaney, “Calibration of rectangular atomic force microscope cantilevers,” Rev. Sci. Instrum., vol. 70, no. 10, p. 3967, 1999.
[8] S. Boskovic, J. W. M. Chon, P. Mulvaney, and J. E. Sader, “Rheological measurements using microcantilevers,” Journal of Rheology, vol. 46, no. 4, p. 891, 2002.
[9] M. Heinisch, T. Voglhuber-Brunnmaier, E. Reichel, I. Dufour, and B. Jakoby, “Reduced order models for resonant viscosity and mass density sensors,” Sensors and Actuators A: Physical, vol. 220, pp. 76–84, 2014.
[10] C. A. V. Eysden and J. E. Sader, “Compressible viscous flows generated by oscillating flexible cylinders,” Physics of Fluids, vol. 21, no. 1, p. 013104, 2009.
[11] H. F. W. Taylor, Cement chemistry. London: T. Telford, 1997.
[12] R. M. Christensen, Mechanics of Composite Materials. Dover Publications, 2012.
[13] Wikipedia, “Poly(methylmethacrylate).” https://en.wikipedia.org/wiki/Poly(methyl_methacrylate), 2004. [Online; accessed 20-June-2016].
[14] Inocit´eWiki, “Fiche technique - pmma.” http://inocite.wikispaces.com/file/detail/Fiche+technique+-+PMMA.pdf, 2011. [Online; accessed 20-June-2016].
[15] M. A. Schultz and L. J. Struble, “Use of oscillatory shear to study flow behavior of fresh cement paste,” Cement and Concrete Research, vol. 23, no. 2, pp. 273–282, 1993.