簡易檢索 / 詳目顯示

研究生: 陳冠仁
Chen, Kuan-Jen
論文名稱: 溶膠-凝膠法合成摻雜氧化鋅奈米線薄膜之結晶機制與光電特性研究
The crystallized mechanism and optoelectronic properties of sol-gel synthesized doped ZnO nanowires thin film
指導教授: 張守進
Chang, Shoou-Jinn
共同指導教授: 洪飛義
Huang, Fei-Yi
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 104
中文關鍵詞: 結晶機制溶膠-凝膠氧化鋅奈米線
外文關鍵詞: crystallized mechanism, sol-gel, ZnO nanowires
相關次數: 點閱:95下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是利用溶膠-凝膠法合成氧化鋅以及摻雜之氧化鋅薄膜,並對其結晶機制與光電特性進行解析。針對未摻雜的氧化鋅薄膜系統,將未結晶化的氧化鋅試片置於氧氣氛中,不同的結晶溫度(600 ºC, 650 ºC 和 700 ºC)下進行熱處理,研究熱結晶溫度對氧化鋅結構與光電特性之影響。結果顯示,在氧化鋅晶體表面以及晶體邊界上成長出氧化鋅奈米線。由氧化鋅晶體分解擴散的鋅離子與通入的氧氣再結合是氧化鋅奈米線成長的主要原因,而根據熱擴散機制與質量守恆定律,氧化鋅奈米線的成長將會造成氧化鋅薄膜體積的耗損。此外,將氧化鋅奈米線薄膜製作成金屬/半導體/金屬(M/S/M)的光檢測器應用研究上,以高功函數的金屬銥(Ir)做為電極。發現在650 ºC結晶溫度下所合成的氧化鋅奈米線薄膜具有最佳的結晶度與發冷光特性,且因具有氧化鋅奈米線的效應則有助於提升光檢測器之效能。
    另一項研究主題是合成不同濃度的銦(In)與錫(Sn)摻雜於氧化鋅薄膜,探討金屬摻雜物對於薄膜的結晶性與光電特性的貢獻。實驗結果顯示,無論是銦或錫的摻雜都會造成薄膜結晶性的劣化,但有助於修復薄膜表面的結構缺陷。在薄膜的光穿透率與電導率方面,銦的摻雜有助於提升氧化鋅薄膜的電導率,無法有效提升薄膜的光穿透率。相反的,氧化鋅摻錫的薄膜擁有很高的薄膜光穿透率,在提升薄膜電導率的表現卻不佳。簡言之,摻雜單一金屬元素無法同時提升氧化鋅薄膜的光穿透率以及電導率。
    有鑑於此,本研究另以溶膠-凝膠法合成氧化鋅(ZnO)與氧化銦錫(ITO)的水溶液,再依不同比例混合(1:1, 2:1 和 9:1)製作出複合的氧化銦錫鋅(ZITO)透明導電薄膜,解析ITO濃度以及結晶溫度對ZITO薄膜特性的影響。ZITO薄膜的結晶度與光穿透率主要是受到ITO濃度(銦+錫的摻雜)的影響,在適當的結晶溫度下(650 ºC),Z9ITO(ZnO : ITO = 9 : 1)薄膜不僅有較高的薄膜電導率,同時具較佳的薄膜光穿透率,可證實ZITO薄膜的光電特性主要是由低銦錫摻雜濃度主導。

    Un-doped ZnO and doped-ZnO thin films were prepared on the silica glass by sol-gel method. The un-crystallized ZnO samples were crystallized at various crystallized temperatures (600 ºC, 650 ºC and 700 ºC) for 1 hour on a pure oxygen atmosphere to understand the effects of thermal energy on crystallization and optical properties. Due to the diffused zinc atoms recombining with oxygen atoms, the ZnO nanowires grew continually from the ZnO grains or the ZnO grain boundaries. According to the thermal diffusion mechanism and the law of conservation of mass, the bottom film of ZnO decreased but ZnO nanowires had grown. In addition, the UV photodetector (iridium/ZnO/iridium) was constructed on the ZnO nanowires thin films with high work function Ir electrodes. From photoluminescence (PL) and I-V measurement, the 650 ºC ZnO nanowires thin film not only possessed better crystallization, but also had the efficacy of nanowires to enhance the optical characteristics that revealed an excellent characteristic of UV photodetector.
    Indium-doped ZnO (IZO) and tin-doped ZnO (SZO) thin films were synthesized by sol-gel method. The different dopants concentrations (0~9 at.%) were doped into ZnO films to understand the contributions of doping mechanism on structural characteristics, optical and electrical properties. Regardless of In or Sn dopants, the crystalline quality of films was deteriorated but the structural defects of film surface could be repaired. For IZO films, the In doping could improved the conductivity of ZnO films, but the optical transmittance was not enhanced completely. Contrarily, the SZO films possessed an excellent optical transmittance and the performance for decreasing conductivity was not clear. Briefly, the electrical conductivity and optical transmittance of ZnO film could not be improved by alone dopants doping.
    The multi-compound ZITO transparent conductive oxide (TCO) thin films were synthesized by ZnO solution mixed with ITO solution. The ZITO thin films with various volume ratios of ZnO to ITO (1:1, 2:1 and 9:1) were crystallized at different temperatures (600~700 ºC). The results showed that the crystalline characteristics and optical transmittance were mainly dependent on ITO content and crystallization. Notably, the 650 ºC Z9ITO film not only had better conductivity but also possessed excellent optical transmittance. Also, the ZITO films were subject to the effects of low indium and tin dopants concentration and this improved the related characteristics of ZnO films.

    Chapter 1 Introduction 1 1-1 Background and motivation 1 1-2 The various growth methods of ZnO nanowires 2 1-3 Sol-gel technology 3 1-4 The effects of thermal treatments on crystallization 4 1-5 The related researches of doping effects on film characteristics 5 1-5-1 The effects of metal dopants on electrical conductivity of film 5 1-5-2 The relation between the doping concentration and optoelectronic properties of film 6 Chapter 2 The investigations of sol-gel synthesized ZnO nanopillar thin films 9 2-1 Introduction 9 2-2 Experimental procedure 10 2-3 TGA and DSC analyses 10 2-4 Structural characteristics of ZnO thin films 11 2-5 Optical properties of ZnO thin films 13 2-6 Optoelectronic characteristics of UV photodetectors based on ZnO nanopillar thin films 14 2-7 Summary 17 Chapter 3 The crystallized mechanism of sol-gel synthesized ZnO nanowires 25 3-1 Introduction 25 3-2 Experimental procedure 25 3-3 Results and discussions 26 3-4 Summary 30 Chapter 4 The investigations of transparent conductive indium (IZO) and tin doped ZnO (SZO) thin films 41 4-1 Introduction 41 4-2 Experimental procedure 42 4-3 IZO thin films 43 4-3-1 Structural characteristics of IZO thin films 43 4-3-2 Optical and electrical properties of IZO thin films 45 4-4 SZO thin films 47 4-4-1 Crystallization characteristics of SZO thin films 47 4-4-2 Effects of Sn doped in optical and electrical properties 49 4-4-3 Doping mechanism 51 4-5 Summary 52 Chapter 5 An investigation of the microstructure and optoelectronic properties of ZITO thin film 67 5-1 Introduction 67 5-2 Experimental procedure 68 5-3 Results and discussion 69 5-3-1 Z1ITO thin film 69 5-3-2 Z2ITO thin film 70 5-3-3 Z9ITO thin film 71 5-3-4 Mechanism of ITO doping 73 5-4 Summary 74 Chapter 6 Conclusions and future work 84 6-1 Conclusions 84 6-2 Future work 86 Reference 87

    [1] M. A. Seitz, T. O. Sokoly, “High-temperature dielectric behavior of polycrystalline ZnO”, J. Electrochem. Soc.: Solid State Sci. Technol. 121, 163-169 (1974)
    [2] D. F. Crisler, J. J. Cupal, A. R. Moon, “Dielectric, piezoelectric and electromechanical coupling constants of zinc oxide crystals”, Proceedings Leners for the IEEE 56, 225-226 (1968)
    [3] N. Schwesinger, H. Bartsch, F. Moller, “Deposition of thick zinc oxide films with a high resistivity“, SPIE 2639, 315-325 (1994)
    [4] T. Okamura, Y. Seki, S. Nagakari, H. Okushi, “Preparation of n-ZnO/ p-Si heterojunction by sol-gel process”, Jpn. J. Appl. Phys. 31, L762-L764 (1992)
    [5] F. Quaranta, A. Valentini, F. R. Rizzi, G. Casamassima, “Dual-ion-beam sputter deposition of ZnO films”, Appl. Phys. 47, 244-247 (1993)
    [6] F. Hickernell, “ZnO processing for bulk and surface wave devices”, IEEE Ultrasonics Symposium, 785-794 (1980)
    [7] J. Maeng, S. Heo, G. Jo, M. Choe, S. Kim, H. Hwang, T. Lee, “The effect of excimer laser annealing on ZnO nanowires and their filed effect transistors”, Nanotechnology 20, 095203 (2009)
    [8] J. Zhu, H. Chen, G. Saraf, Z. Duan, Y. Lu, S. T. Hsu, “ZnO TFT devices built on glass substrates”, J. Electron. Mater. 37, 1237-1240 (2008)
    [9] M. Y. Lu, J. Song, M. P. Lu, C. Y. Lee, L. J. Chen, Z. L. Wang, “ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation”, ACS Nano 3, 357-362 (2009)
    [10] W. C. Shih, H. Y. Su, M. S. Wu, “Deposition of ZnO thin film on SiO2/Si substrate with Al2O3 buffer layer by radio frequency magnetron sputtering for high frequency surface acoustic wave devices” Thin Solid Films 517, 3378-3381 (2009)
    [11] S. Fernandez, A. Martinez-Steele, J. J. Gandia, F. B. Naranjo, “Radio frequency sputter deposition of high-quality conductive and transparent ZnO:Al films on polymer substrates for thin film solar cells application”, Thin Solid Films 517, 3152-3156 (2009)
    [12] N. Han, Y. Tian, X. Wu, Y. Chen, “Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO”, Sens. Actuator. B 138, 228-235 (2009)
    [13] G. Shukla, “ZnO/MgZnO p-n junction light-emitting diodes fabricated on sapphire substrates by pulsed laser deposition technique”, J. Phys. D: Appl. Phys. 42, 075105 (2009)
    [14] H. Huang, G. Fang, X. Mo, L. Yuan, H. Zhou, M. Wang, H. Xiao, X. Zhao, “Zero-biased near-ultraviolet and visible photodetector based on ZnO nanorods/n-Si heterojunction”, Appl. Phys. Lett. 94, 063512 (2009)
    [15] X. Li , B. Zhang, H. Zhu, X. Dong, X. Xia, Y. Cui, K. Huang, G. Du, “Properties of ZnO thni films grown on Si substrates by photo-assisted MOCVD”, Appl. Surf. Sci. 254, 2081-2084 (2008)
    [16] P. K. Shin, Y. Aya, T. Ikegamo, K. Ebihara, ”Application of pulsed laser deposited zinc oxide films to thin film transistor device”, Thin Solid Films 516, 3767-3771 (2008)
    [17] Z. Yang, J. -H. Lim, S. Chu, Z. Zuo, J. L. Liu, “Study of the effect of plasma power on ZnO thin films growth using electron cyclotron resonance plasma-assisted molecular-beam epitaxy”, Appl. Surf. Sci. 255, 3375-338 (2008)
    [18] T. Matsuda, M. Furuta, T. Hiramatsu, C. Li, H. Furuta, H. Hokari, T. Hirao, ”Influence of amorphous buffer layers on the crystallinity of sputter-deposited undoped ZnO films”, J. Cryst. Growth 310, 31-35 (2008)
    [19] M. Dutta, S. Mridha, D. Basak, “Effect of sol concentration on the properties of ZnO thin films prepared by sol-gel technique”, Appl. Surf. Sci. 254, 2743-2747 (2008)
    [20] S. O'Brien, L. H. K. Koh, G. M. Crean, “ZnO thin films prepared by a single step sol-gel process”, Thin Solid Films 516, 1391-1395 (2008)
    [21] S. Venkataraj, S. Hishita, Y. Adachi, I. Sakaguchi, K. Matsumoto, N. Saito, H. Haneda, N. Ohashi, “Structure and electric properties in tin-doped zinc oxide films synthesized by pulsed laser deposition”, J. Electrochem. Soc. 156, H424-H429 (2009)
    [22] S. W. Cho, J. A. Jeong, J. H. Bae, J. M. Moon, K. H. Choi, S. W. Jeong, N. J. Park, J. J. Kim, S. H. Lee, J. W. Kang, M. S. Yi, H. K. Kim, “Highly flexible, transparent, and low resistance indium zinc oxide-Ag-indium zinc oxide multilayer anode on polyethylene terephthalate substrate for flexible organic light-emitting diodes”, Thin Solid Films 516, 7881-7885 (2008)
    [23] M. Zhou, H. Zhu, Y. Jiao, Y. Rao, S. Hark, Y. Liu, L. Peng, Q. Li, “Optical and electrical properties of Ga-doped ZnO nanowires arrays on conducting substrates”, J. Phys. Chem. C 113, 8945-8947 (2009)
    [24] C. Y. Tsay, H. C. Cheng, M. C. Wang, P. Y. Lee, C. F. Chen, C. K. Lin, “Performance of sol-gel deposited Zn1-XMgXO films used as active channel layer for thin-film transistors”, Surf. Coat. Technol. 202, 1323-1328 (2007)
    [25] G. Srinivasan, R. T. Rajendra Kumar, J. Kumar, “Li doped and undoped ZnO nanocrystalline thin films: a comparative study of structural and optical properties“, J. Sol-Gel Sci. Technol. 43, 171-177 (2007)
    [26] E. Fortunato, P. Barquinha, G. Goncalves, L. Pereira, R. Martins, “High mobility and low threshold voltage transparent thin film transistors based on amorphous indium zinc oxide semiconductors”. Solid-State Electron. 52, 443-448 (2008)
    [27] Y. Hayashi, K. Kondo, K. Murai, T. Moriga, I. Nakabayashi, H. Fukumoto, K. Tominaga, “ZnO-SnO2 transparent conductive films deposited by opposed target sputtering system of ZnO and SnO2 targets”, Vacuum 74, 607-611 (2004)
    [28] W. Lim, Y. L. Wang, F. Ren, D. P. Norton, I. I. Kravchenko, J. M. Zavada, S. J. Pearton, “Indium zinc oxide thin films deposited by sputtering at room temperature“, Appl. Surf. Sci. 254, 2878-2881 (2008)
    [29] T. Moriga, Y. Hayashi, K. Kondo, Y. Nishimura, K. Murai, I. Nakabayashi, H. Fukumoto, K. Tominaga, “Transparent conducting amorphous Zn-Sn-O films deposited by simultaneous DC sputtering“, J. Vacuum Sci. Technol. A 22, 1705-1710 (2004)
    [30] D. S. Liu, C. H. Lin, F. C. Tsai, C. C. Wu, “Microstructure investigations of indium tin oxide films cosputtered with zinc oxide at room temperature“, J. Vac. Sci. Technol. A 24 (3), 694-699 (2006)
    [31] C. W. O. Yang, H. Y. Yeom, D. C. Paine, “Fabrication of transparent conducting amorphous Zn-Sn-In-O thin films by direct current magnetron sputtering”, Thin Solid Films 516, 3105-3111 (2008)
    [32] K. J. Saji, M. K. Jayaraj, K. Nomura, T. Kamiya, H. Hosono, “Optical and carrier transport properties of cosputtered Zn-In-Sn-O films and their applications to TFTs”, J. Electrochem. Soc. 155 (6), H390-H395 (2008)
    [33] S. Mridha, R. Ghosh, D. Basak, “Ultraviolet photodetection properties of a Pt contact on a Mg0.1Zn0.9O/ZnO composite film“, J. Electron. Mater. 36, 1643-1647 (2007)
    [34] C. Y. Liu, B. P. Zhang, Z. W. Lu, N. T. Binh, K. Wakatsuki, Y. Segawa, R. Mu, “Fabrication and characterization of ZnO film based UV photodetector”, J. Mater. Sci: Mater. Electron. 20, 197-201 (2009)
    [35] H. Zhu, C. X. Shan, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, D. Z. Shen, X. W. Fan, “High spectrum selectivity ultraviolet photodetector fabricated from an n-ZnO/p-GaN heterojunction”, J. Phys. Chem. C 112, 20546-20548 (2008)
    [36] D. Basak, G. Amin, B. Mallik, G. K. paul and S. K. Sen, “Photoconductive UV detectors on sol-gel-synthesized ZnO films”, J. Cryst. Growth 256, 73-77 (2003)
    [37] Z. Q. Xu, H. Deng, J. Xie, Y. Li and X. T. Zu, “Ultraviolet photoconductive detector based on Al doped ZnO films prepared by sol-gel method”, Appl. Surf. Sci. 253 , 476-479 (2006)
    [38] G. S. Wu, T. Xie, X. Y. Yuan, Y. Li, L. Yang, Y. H. Xiao. L. D. Zhang, “Controlled synthesis of ZnO nanowires or nanotubes via sol-gel template process”, Solid State Commum. 134, 485-489 (2005)
    [39] X. Liu, J. Wang, J. Zhang, S. Yang, “Sol-gel-template synthesis of ZnO nanotubes and its coaxial nanocomposites of LiMn2O4/ZnO”, Mater. Sci. Eng. A 430, 248-253 (2006)
    [40] X. Ren, C. H. Jiang, D. D. Li, L. He, “Fabrication of ZnO nanotubes with ultrathin wall by electrodeposition method”, Mater. Lett. 62, 3114-3116 (2008)
    [41] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions”, Adv. Mater. 15, 464-466 (2003)
    [42] J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, L. Vayssieres, “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications“, Nonotechnology 17, 4995-4998 (2006)
    [43] S. N. Bai, H. H. Tsai, T. Y. Tseng, “Structural and properties of Al-doped ZnO nanowires synthesized by hydrothermal method“, Thin Solid Films 516, 155-158 (2007)
    [44] H. Q. Le, S. J. Chua, Y. W. Koh, K. P. Loh, E. A. Fitzgerald, “Systematic studies of the epitaxial growth of single-crystal ZnO nanorods on GaN using hydrothermal synthesis”, J. Cryst. Growth 293, 36-42 (2006)
    [45] H. J. Fan, B. Fuhrmann, R. Scholz, C. Himcinschi, A. Berger, H. Leipner, A. Dadgar, A. Krost, S. Chrestiansen, U. Gösele, M. Zacharas, “Vapour-transport-deposition growth of ZnO nanostructures: switch between c-axial wires and a-axial belts by indium doping“, Nanotechnology 17, S231-S239 (2006)
    [46] Q. X. Zhao, P. Klason, M. Willander, “Growth of ZnO nanostructures by vapor-liquid-solid method” Appl. Phys. A 88, 27-30 (2007)
    [47 ] S. R. Hejazi, H. R. M. Hosseini, M. S. Ghamsari, “The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor-liquid-solid (VLS) mechanism” J. Alloy. Compound. 455, 353-357 (2008)
    [48] J. Park, H. H. Choi, K. Siebein, R. K. Singh, “Two-step evaporation process for formation of aligned zinc oxide nanowires”, J. Cryst. Growth 258, 342-348 (2003)
    [49] A. Umar, S. H. Kim, Y. -S. Lee, K. S. Nahm, Y. B. Hahn, “Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor-solid growth mechanism: Structural and optical properties”, J. Cryst. Growth 282, 131-136 (2005)
    [50] J. F. Conley, Jr, L. Stecker, Y. Ono, “Directed assembly of ZnO nanowires on a Si substrate without a metal catalyst using a patterned ZnO seed layer”, Nanotechnology 16, 292-296 (2005)
    [51] C. J. Brinker, G. W. Scherer, Sol-gel Science, Academic press, New York, p. 839 (1990)
    [52] J. Livage, C. Sanchez, “Sol-Gel chemistry”, J. Non-Cryst. Solids 145, 11-19 (1992)
    [53] K. Yoshino, S. Oyama, M. Kato, M. Oshima, M. Yoneta, T. Ikari, “Annealing effects of In-doped ZnO films grown by spray pyrolysis method”, J. Phys.: Conf. Series 100, 082019 (2008)
    [54] S. W. Xue, X. T. Zu, W. L. Zhou, H. X. Deng, X. Xiang, L. Zhang, H. Deng, “Effects of post-thermal annealing on the optical constants of ZnO thin film”, J. Alloy Compound. 448, 21-26 (2008)
    [55] Y. Liu, S. H. Yang, Y. I. Zhang, D. H. Bao, “Influence of annealing temperature on structural, optical and magnetic properties of Mn-doped ZnO thin films prepared by sol-gel method”, J. Magnetism and Magnetic Mater. 321, 3406-3410 (2009)
    [56] X. Liu, W. Bi, Z. Liu, “Influence of post-annealing on the properties of Sc-doped ZnO transparent conductive films deposited by radio-frequency sputtering”, Appl. Surf. Sci. 255, 7942-7945 (2009)
    [57] H. Nian, S. H. Hahn, K. K. Koo, E. W. Shin, E. J. Kim, “Sol-gel derived N-doped ZnO thin films”, Mater. Lett. 63, 2246-2248 (2009)
    [58] S. Y. Chang, N. H. Yang, Y. C. Huang, “Hydrothermal growth and interface correlation of highly aligned ZnO nanorods arrays on UV-activated sol-gel transparent conducting films”, J. Electrochem. Soc. 156 (11), K200-K204 (2009)
    [59] M. Ohyama, H. Kozuka, T. Yoko, “Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution”, Thin Solid Films 306, 78-85 (1997)
    [60] J. H. Lee, K. H. Ko, B. O. Park, “Electrical and optical properties of ZnO transparent conducting films by the sol-gel method” J. Cryst. Growth 247, 119-125 (2003)
    [61] S. Y. Kuo, W. C. Chen, C. P. Cheng, “Investigation of annealing-treatment on the optical and electrical properties of sol-gel-derived zinc oxide thin films”, Superlattices and Microstructures 39, 162-170 (2006)
    [62] T. Ehara, T. Otsuki, J. Abe, T. Ueno, M. Ito, T. Hirayama, “The effect of thermal treatment conditions employed in sol-gel method on the structure of ZnO thin films”, Phys. Status Solidi A 206, 2139-2142 (2009)
    [63] M. Çopuroğlu, S. O’Brien, G. M. Crean, “Sol-gel synthesis, comparative characterization, and reliability analyses of undoped and Al-doped zinc oxide thin films”, Thin Solid Films 517, 6323-6326 (2009)
    [64] A. Sedky, A. Al- Sawalha, A. M. Yassin, “Enhancement of electrical conductivity by Al-doped ZnO ceramic varistors”, Physica B 404, 3519-3524 (2009)
    [65] C. Huang, M. Wang, Q. Liu, Y. Cao, Z. Deng, Z. Huang, Y. Liu, Q. Huang, W. Guo, “Physical properties and growth kinetics of co-sputtered indium-zinc oxide films”; Semicond. Sci. Technol. 24, 095019 (2009)
    [66] D. H. Shin, Y. H. Kim, J. W. Han, K. M. Moon, R. I. Murakami, “Effect of process parameters on electrical, optical properties of IZO films produced by inclination opposite target type DC magnetron sputtering”, Trans. Nonferrous Met. Soc. China 19, 997-1000 (2009)
    [67] A. E. Rakhshani, A. Bumajdad, J. Kokaj, S. Thomas, “Structure, composition and optical properties of ZnO:Ga films electrodeposited on flexible substrates”, Appl. Phys. A 97, 759-764 (2009)
    [68] J. Kobayashi, N. Ohashi, H. Sekiwa, I. Sakaguchi, M. Miyamoto, Y. Wada, Y. Adachi, K. Matsumoto, H. Haneda, “Properties of gallium- and aluminum-doped bulk ZnO obtained from single-crystals grown by liquid phase epitaxy”, J. Cryst. Growth 311, 4408-4413 (2009)
    [69] Y. Caglar, S. Aksoy, S. Ilican, M. Caglar, “Crystalline structure and morphological properties of undoped and Sn doped ZnO thin films”, Superlattices Microstruct. 46, 469-475 (2009)
    [70] K. C. Yung, H. Liem, H. S. Choy, “Enhanced redshift of optical band gap in Sn-doped ZnO free standing films using the sol-gel method”, J. Phys. D: Appl. Phys. 42, 185002 (2009)
    [71] M. Jiang, X. Liu, G. Chen, J. Cheng, X. Zhou, “Preparation and photoelectric properties of Ti doped ZnO thin films annealed in vaccum”, J. Mater. Sci: Mater. Electron. 20, 1225-1228 (2009)
    [72] J. L. Chung, J. C. Chen, C. J. Tseng, “Preparation of TiO2-doped ZnO films by radio frequency magnetron sputtering in ambient hydrogen-argon gas”, Appl. Surf. Sci. 255, 2494-2499 (2008)
    [73] H. M. Zhou, D. Q. Yi, Z. M. Yu, L. R. Xiao, J. Li, “Preparation of aluminum doped zinc oxide films and the study of their microstructure, electrical and optical properties”, Thin Solid Films 515, 6909-6914 (2007)
    [74] K. M. Lin, P. Tsai, “Growth mechanism and characterization of ZnO: Al multi-layered thin films by sol-gel technique”, Thin Solid Films 515, 8601-8604 (2007)
    [75] M. Ohyama, H. Kozuka, T. Yoko, “Sol-gel preparation of transparent and conductive aluminum-doped zinc oxide films with highly preferential crystal orientation”, J. Am. Ceram. 81 (6), 1622-1632 (1998)
    [76] E. J. Luna-Arredondo, A. Maldonado, R. Asomoza, D. R. Acosta, M. A. Meléndez-Lira, M. de la L. Olvera, “Indium-doped ZnO thin films deposited by the sol-gel technique”, Thin Solid Films 490, 132-136 (2005)
    [77] J. H. Lee, B. O. Park, ”Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol-gel method”, Thin Solid Films 426, 94-99 (2003)
    [78] V. Fathollahi, M. Mohammadpour Amini, “Sol–gel preparation of highly oriented gallium-doped zinc oxide thin films”, Mater. Lett. 50, 235-239 (2001)
    [79] Q. Yu, H. Yang, W. Fu, L. Chang, J. Xu, C. Yu, R. Wei, K. Du, H. Zhu, M. Li, G. Zou, “Transparent conducting yttrium-doped ZnO thin films deposited by sol-gel method”, Thin Solid Films 515, 3840-3843 (2007)
    [80] M. R. Vaezi, S. K. Sadrnezhaad, “Improving the electrical conductance of chemically deposited zinc oxide thin films by Sn dopant”, Mater. Sci. Eng. B 141, 23-27 (2007)
    [81] C. Y. Tsay, H. C. Cheng, Y. T. Tung, W. H. Tuan, C. K. Lin, “Effect of Sn-doped on microstructural and optical properties of ZnO thin films deposited by sol-gel method”, Thin Solid Films 515, 1032-1036 (2008)
    [82] Z. Xu, H. Deng, J. Xie, Y. Li, Y. Li, “Photoconductive UV Detectors Based on ZnO Films Prepared by Sol-Gel Method”, J. Sol–Gel Sci. Technol. 36, 223-226 (2006)
    [83] Y. R. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, Y. S. Park, C. J. Youn, “ZnO devices: Photodiodes and p-type field-effect transistors”, Appl. Phys. Lett.87, 153504 (2005)
    [84] J. Yoo, J. Lee, S. Kim, K. Yoon, I.. J. Park, S. K. Dhungel, B. Karunagaran, D. Mangalaraj, “The properties of surface textured ZnO:Al films for thin film solar cells”, J. Yi, Phys. Stat. Sol. (c) 2, 1228-1232 (2005)
    [85] S. J. Young, L. W. Ji, S. J. Chang, S. H. Liang, K. T. Lam, T. H. Fang, K. J. Chen, X. L. Du, Q. K. Xue, “ZnO-based MIS photodetectors”, Sens. Actuators A 141, 225–229 (2008)
    [86] J. Wang, W. Chen, M. Wang, “Properties analysis of Mn-doped ZnO piezoelectric films”, J. Alloys Compd. 449, 44-47 (2008)
    [87] L. Dai, X. L. Chen, J. K. Jian, M. He, T. Zhou, B. Q. Hu, “Fabrication and characterization of In2O3 nanowires”, Appl. Phys. A Mater. Sci. Process. 75, 687-689 (2002)
    [88] Q. Wan, J. Huang, Z. Xie, T. Wang, E. N. Dattoli, W. Lu, “Branced SnO2 nanowires on metallic nanowires backbones for ethanol sensors application”, Appl. Phys. Lett. 92, 102101 (2008)
    [89] Y. F. Hsu, A. B. Djurisic, K. H. Tam, K. Y. Cheung, W. K. Chan, “Fabrication and characterization of ZnO/TiOX nanoscale heterojunctions”, J. Cryst. Growth 307, 348-352 (2007)
    [90] C. J. Capozzi, R. A. Gerhardt, “Novel percolation mechanism in PMMA matrix composites containing segregated ITO nanowires networks”, Adv. Funct. Mater. 17, 2515-2521 (2007)
    [91] H. Q. Liang, L. Z. Pan, Z. J. Liu, “Synthesis and photoluminescence properties of ZnO nanowires and nanorods by thermal oxidation of Zn precursors”, Mater. Lett. 62, 1797-1800 (2008)
    [92] S. S. Kwon, W. K. Hong, G. Jo, J. Maeng, T. W. Kim, S. Song, T. Lee, “Piezoelectric Effect on the Electronic Transport Characteristics of ZnO Nanowire Field-Effect Transistors on Bent Flexible Substrates”, Adv. Mater. 20, 4557-4567 (2008)
    [93] X. Wang, G. Li, Y. Wang, “Synthesis and characterization of well-aligned Cd–Al codoped ZnO nanorod arrays”, Chem. Phys. Lett. 469, 308-312 (2009)
    [94] M. Qiu, Z. Ye, J. Lu, H. He, J. Huang, L. Zhu, B. Zhao, “Growth and properties of ZnO nanorod and nanonails by thermal evaporation”, Appl. Surf. Sci. 255, 3972-3976 (2009)
    [95] T. T. Loan, N. N. Long, L. H. Ha, “Photoluminescence properties of Co-doped ZnO nanorods synthesized by hydrothermal method”, J. Phys. D: Appl. Phys. 42, 065412 (2009)
    [96] K. R. Murali, “Properties of sol–gel dip-coated zinc oxide thin films”, J. Phys. Chem. Solid. 68, 2293-296 (2007)
    [97] M. Ohyama, H. Kozuka, T. Yoko, “Sol-gel preparation of transparent and conductive aluminum-doped zinc oxide films with highly preferential crystal orientation”, J. Am. Ceram. Soc. 81, 1622-1632 (1998)
    [98] R. Ghosh, D. Basak, S. Fujihara, “Effect of substrate-induced strain on the structural, electrical and optical properties of polycrystalline ZnO thin films”, J. Appl. Phys. 96, 2689-2692 (2004)
    [99] H. S. Kang, J. S. Kang, S. S. Pang, E. S. Shim, S. Y. Lee, “Variation of light emitting properties of ZnO thin films depending on post-annealing temperature”, Mater. Sci. Eng. B102, 313-316 (2003)
    [100] M. Wang, K. E. Lee, S. H. Hahn, E. J. Kim, S. Kim, J. S. Chung, E. W. Shin, C. Park, “Optical and photoluminescent properties of sol-gel Al-doped ZnO thin films”, Mater. Lett. 61, 1118-1121 (2007)
    [101] Robert. E. Reed-Hill, Physical Metallurgy Principles, third edition, International Thomson Publishing, chap. 8
    [102] W. D. Yu, X. M. Li, X. D. Gao, “Self-catalytic synthesis and photoluminescence of ZnO nanostructures on ZnO nanocrystal substrates”, Appl. Phys. Lett. 84, 2685-2660 (2004)
    [103] Y. C. Liu, Y. W. Chen, C. L. Shao. S. X. Lu, “Structural, optical and photoelectric properties of ZnO:In and MgXZnO1-XO nanofilms prepared by sol-gel method”, J. Sol-Gel Sci. Techn. 39, 57-62 (2006)
    [104] K. J. Chen, F. Y. Hung, S. J. Chang, “Structural characteristic, Raman analysis and optical properties of indium-doped ZnO nanoparticles prepared by sol-gel method”, J. Nanosci. Nanotech. 8, 1-5 (2009)
    [105] P. Sagar, P. K. Shishodia, P. M. Mehra, H. Okada, A. Wakahara, A. Yoshida, “Photoluminescence and absorption in sol-gel-derived ZnO films”, J. Lumin. 126, 800-806 (2007)
    [106] F. Fang, D. X. Zhao, J. Y. Zhang, D. Z. Shen, Y. M. Lu, X. W. Fan, B. H. Li, X. H. Wang, “The influence of growth temperature on ZnO nanowires”, Mater. Lett. 62, 1092-1095 (2008)
    [107 ] H. S. Kang, J. S. Kang, J. W. Kim and S. Y. Lee, “Annealing effect on the property of ultraviolet and green emissions of ZnO thin films”, J. Appl. Phys. 95, 1246-1250 (2004)
    [108] K. J. Chen, T. H. Fang, F. Y. Hung, L. W. Ji, S. J. Chang, Y. J. Hsiao, “The crystallization and physical properties of Al-doped ZnO nanoparticles”, Appl. Surf. Sci. 254, 5791-5795 (2008)
    [109] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, T. H. Lu, Y. K. Tseng, I. C. Chen, “ Selective growth of vertical ZnO nanowires on ZnO:Ga/Si3N4/SiO2/Si templates”, J. Vac. Sci. Technol. B 23 (6), 2292-2296 (2005)
    [110] P. Sandvik, K. Mi, F. Shahedipour, R. McClintock, A. Yasan, P. Kung and M. Razeghi:, “AlxGa1−xN for solar-blind UV detectors“, J. Cryst. Growth 231, 366-370 (2001)
    [111] C. Varenne, L. Maezt, J. Brunet, K. Wierzbowska, A. Pauly and B. Lauron, “Improvement in lifetime of pseudo-Schottky diode sensor: Towards selective detection of O3 in a gaseous mixture (O3, NO2)”, Thin Solid Films 516, 2237-2243 (2008)
    [112] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport”, Adv. Mater. 13, 113-116 (2001)
    [113] P. T. hsieh, Y. C. Chen, K. S. Kao and C. C. Cheng, “The ultraviolet emission mechanism of ZnO thin film fabricated by sol-gel technology”, J. Euro. Cera. Soc. 27, 3815-3818 (2007)
    [114] S. J. Young, L. W. Ji, T. H. Fang, S. J. Chang, Y. K. Su and X. L. Du, “ZnO ultraviolet photodiodes with Pd contact electrodes”, Acta Materialia 55, 329-333 (2007)
    [115] S. N. Mohammad, Z. Fan, A. E. Botchkarev, W. Kim, O. Aktas, and A. Salvador, “Near-ideal platinum-GaN Schottky diodes”, Electron. Lett., 32, 598-599 (1996)
    [116] A. C. Schmitz, A. T. Ping, M. A. Khan, Q. Chen and J. W. Yang: I. Adesida, “High temperature characteristics of Pd Schottky contacts on n-type GaN”, Electron. Lett., 32, 1832-1833 (1996)
    [117] S. J. Young, L. W. Ji, S. J. Chang, Y. P. Chen, K. T. Lam, S. H. Liang, X. L. Du, Q. K. Xue and Y. S. Sun, “ZnO metal–semiconductor–metal ultraviolet photodetectors with Iridium contact electrodes”, IET Optoelectron. 1, 135-139 (2007)
    [118] L. F. Voss, L. Stafford, B. P. Gila, S. J. Pearton and F. Ren, “Ir-based diffusion barriers for Ohmic contacts to p-GaN”, Appl. Surf. Sci. 254, 4134-4138 (2008)
    [119] L. F. Mattheiss, “Electronic structure of RuO2, OsO2, and IrO2”, Phys. Rev. B 13, 2433-2450 (1976)
    [120] H. W. Kim, S. H. Shim, J. H. Myung and C. Lee, “Annealing effects on the structural properties of IrO2 thin films”, Vacuum 82, 1400-1403 (2008)
    [121] J. K. Kim, H. W. Jang, C. M. Jeon and J. L. Lee, “GaN metal–semiconductor–metal ultraviolet photodetector with IrO2 Schottky contact”, Appl. Phys. Lett. 81, 4655-4657 (2002)
    [122] S. S. Thanawala, R. J. Baird, D. G. Georgiev and G. W. Auner, “Amorphous and crystalline IrO2 thin films as potential stimulation electrode coatings”, Appl. Surf. Sci. 254, 5164-5169 (2008)
    [123] J. H. He, Y. H. Lin, M. E. McConney, V. V. Tsukruk, Z. L. Wang and G. Bao, “Enhancing UV photoconductivity of ZnO nanobelt by polyacrylonitrile functionalization”, J. Appl. Phys. 102, 084303 (2007)
    [124] Z. Xu, H. Deng, J. Xie, Yan Li, Y. Li, X. Zu, S. Xue, “Photoconductive UV Detectors Based on ZnO Films Prepared by Sol-Gel Method”, J. Sol-Gel Sci. Techn. 36, 223-226 (2005)
    [125] J. Y. Son, S. J. Lim, J. H. Cho, W. K. Seong, H. Kim, “Synthesis of horizontally aligned ZnO nanowires localized at terrace edges and applications for high sensitivity gas sensor”, Appl. Phys. Lett. 93, 053109 (2008)
    [126] W. K. Hong, J. I. Sohn, D. K. Hwang, S. S. Kwon, G. Jo, S. Song, S. M. Kim, H. J. Ko, S. J. Park, M. E. Welland, T. Lee, “Tunable electronic transport characteristics of surface-architecture-controlled ZnO nanowires field effect transistors”, Nano Lett. 8, 950-956 (2008)
    [127] J. Cheng, Y. Zhang, R. Guo, “ZnO microtube ultraviolet detecdors”, J. Cryst. Growth 310, 57-61 (2008)
    [128] Y. Y. Xi, Y. F. Hsu, A. B. Djurisic, W. K. Chan, “Electrochemical synthesis of ZnO nanoporous films at low temperature and their application in dye-sensitized solar cells”, J. Electrochem. Soc. 155, D595-D598 (2008)
    [129] J. S. Lee, M. S. Islam, S. Kim, “Photoresponses of ZnO nanobridge devices fabricated using a single-step thermal evaporation method”, Sens. Actuators B: Chem. 126, 73-77 (2007)
    [130] H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, J. M. Xu, “Periodic array of uniform ZnO nanorods by second-order self-assembly”, Appl. Phys. Lett. 84, 3376-3378 (2004)
    [131] J. J. Chen, M. H. Yu, W. L. Zhou, “Room-temperature ferromagnetic Co-doped ZnO nanoneedle array prepared by pulsed laser deposition”, Appl. Phys. Lett. 87, 173119 (2005)
    [132] S. Ju, S. Kim, S. Mohammadi, D. B. Janes, Y. -G. Ha, A. Facchetti, T. J. Arks, “Interface studies of ZnO nanowire transistors using low-frequency noise and temperature-dependent I-V measurements”, Appl. Phys. Lett. 92, 022104 (2008)
    [133] Y. Chen, R. Yu, Q. Shi, J. Qin, F. Zheng, “Hydrothermal synthesis of hexagonal ZnO clusters”, Mater. Lett. 61, 4438-4441 (2007)
    [134] S. Y. Liu, T. Chen, J. Wan, G. P. Ru, B. Z. Li, X. P. Qu, “The effect of pre-annealing of sputtered ZnO seed layers on growth of ZnO nanorods through a hydrothermal method”, Appl. Phys. A 94, 775-780 (2009)
    [135] L. H. Quang, S. J. Chua, K. P. Loh, E. Fitzgerald, “The effect of post-annealing treatment on photoluminescence ”, J. Cryst. Growth 287, 157-161 (2006)
    [136] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng, I. C. Chen, “Vertical single-crystal ZnO nanowires grown on ZnO:Ga/glass templates”, IEEE Trans. Nanotechnology 4, 649-654 (2005)
    [137] K. J. Chen, F. Y. Hung, S. J. Chang, Z. S. Hu, “Microstructures, optical and electrical properties of In-doped ZnO thin films prepared by sol-gel method”, Appl. Surf. Sci. 255, 6308-6312 (2009)
    [138] T. C. Lin, S. C. Chang, C. F. Chiu, “Annealing effect of ITO and ITO/Cu transparent conductive films in low pressure hydrogen atmosphere”, Mater. Sci. Eng. B 129, 39-42 (2006)
    [139] D. R. Sahu, S. Y. Lin, J. L. Huang, “Deposition of Ag-based Al-doped ZnO multilayer coatings for the transparent conductive electrodes by electron beam evaporation”, Solar Energy Mater. Solar Cell. 91, 851-855 (2007)
    [140] D. H. Lee, S. H. Shim, J. S. Choi, K. B. Yoon, “The effect of electro-annealing on the electrical properties of ITO film on colorless polyimide substrate”, Appl. Surf. Sci. 254, 4650-4654 (2008)
    [141] Q. B. Ma, Z. Z. Ye, H. P. He, J. R. Wang, L. P. Zhu, B. H. Zhao, “Preparation and characterization of transparent conductive ZnO:Ga films by DC reactive magnetron sputtering”, Mater. Character. 59, 124-128 (2008)
    [142] E. Fortunato, P. Barquinha, G. Gonçalves, L. Pereira, R. Martins, “High mobility and low threshold voltage transparent thin film transistors based on amorphous indium zinc oxide semicounductors”, Solid-State Electron. 52, 443-448 (2008)
    [143] D. C. Paine, B. Yaglioglu, Z. Beiley, S. Lee, “Amorphous IZO-based transparent thin film transistors”, Thin Solid Films 516, 5894-5898 (2008)
    [144] Y. S. Park, H. K. Park, S. W. Cho, J. A. Jeong, K. H. Choi, H. K. Kim, J. Y. Lee, J. H. Lee, H. D. Bae, Y. H. Tak, W. J. Cho, “Transparent conducting AZO cosputtered ITO anode films grown by a dual target DC magnetron sputtering for OLEDs”, Electrochem. Solid-State Lett. 11 (11), J85-J88 (2008)
    [145] J. J. Berry, D. S. Ginley, P. E. Burrows, “Organic light emitting diodes using a Ga:ZnO anode”, Appl. Phys. Lett. 92, 193304 (2008)
    [146] C. Jeong, H. S. Kim, D. R. Chang, K. Kamisako, “Effect on Al2O3 Doping Concentration of RF Magnetron Sputtered ZnO:Al Films for Solar Cell Applications”, J. J. Appl. Phys. 47, 5656-5658 (2008)
    [147] Y. L. Li, D. Y. Lee, S. R. Min, H. N. Cho, J. Kim, C. W. Chung, “Effect of Oxygen Concentration on Properties of Indium Zinc Oxide Thin Films for Flexible Dye-Sensitized Solar Cell”, J. J. Appl. Phys. 47, 6896 (2008)
    [148] J. H. Bae, H. K. Kim, “Characteristics of Al doped ZnO co-sputtering InZnO anode films prepared by direct current magnetron sputtered for organic light-emitting diodes”, Thin Solid Films 516, 7866-7870 (2008)
    [149] S. Cornelius, M. Vinnichenko, N. Shevchenko, A. Rogozin, A. Kolitsch, W. Möller, “Achieving high free electron mobility in ZnO:Al thin films grown by reactive pulsed magnetron sputtering”, Appl. Phys. Lett. 94, 042103 (2009)
    [150] S. L. King, J. G. E. Gardeniers, I. W. Boyd, “Pulsed-laser deposited ZnO for device applications”, Appl. Surf. Sci. 811, 96-98 (1996)
    [151] S. J. Park, S. J. Jang, S. S. Kim, B. T. Lee, “Growth and characterization of single crystal ZnO thin films using inductively coupled plasma metal organic chemical vapor deposition”, Appl. Phys. Lett. 89 (2006), 121108
    [152] X. A. Zhang, J. W. Zhang, W. F. Zhang, D. Wang, Z. Bi, X. M. Bian, X. Hou, “Enhancement-mode thin film transistor with nitrogen-doped ZnO channel layer deposited by laser molecular beam epitaxy”, Thin Solid Films 516, 3305-3308 (2008)
    [153] J. S. Wellings, N. B. Chaure, S. N. Heavens, I. M. Dharmadasa, “Growth and characterisation of electrodeposited ZnO thin films”, Thin Solid Films 516, 3893-3898 (2008)
    [154] S. Mridha, D. Basak, “Effect of thickness on the structural, electrical and optical properties of ZnO films”, Mater. Res. Bull. 42, 875–882 (2007)
    [155] S. O’Brien, L. H. K. Koh, G. M. Crean, “ZnO thin films prepared by a single step sol–gel process”, Thin Solid Films 516, 1391-1395 (2008)
    [156] T. Ratana, P. Amornpitoksuk, T. Ratana, S. Suwanboon, “The wide band gap of highly oriented nanocrystalline Al doped ZnO thin films from sol-gel dip coating”, J. Alloy. Comp. 470, 408-412 (2009)
    [157] S. Jung, J. Y. Seo, D. W. Lee, D. Y. Jeon, ”Influence of DCmagnetron sputtering parameters on the properties of amorphous indium zinc oxide thin film”, Thin Solid Films 445, 63-71 (2003)
    [158] Y. R. Park. E. K. Kim, D. Jung, T. S. Park, Y. S. Kim, “Growth of transparent conducting nano-structured In doped ZnO thin films by pulsed DC magnetron sputtering”, Appl. Surf. Sci. 254, 2250-2254 (2008)
    [159] C. J. Huang, M. C. Chiu, H. C. Yao, D. C. Tsai, F. S. Shieub, “Investigation of the characteristics of undoped and Sn-doped ZnO films prepared by acidic sol”, J. Electrochem. Soc. 155, K211-K218 (2008)
    [160] E. J. L. Arredonoda, A. Maldonado, R. Asomoza, D. R. Acosta, M. A. M. Iira, M. L. Olvera, “Indium-doped ZnO thin films deposited by the sol–gel technique”, Thin Solid Films. 490, 132-136 (2005)
    [161] B. D. Cullity, The Elements of X-Ray Diffraction, Addison-Wesley, Reading, MA, p. 102 (1978)
    [162] Jens Als-Nielsen, Des McMorrow, Elements of Modern X-Ray Physics, John Wiley & Sons, Ltd (2001)
    [163] R. Kaur, A. V. Singh, R. M. Mehra, “Structural, electrical and optical properties of sol-gel derived yttrium doped ZnO films”, Phys. Stat. Sol. (a) 202, 1053-1059 (2005)
    [164] U. N. Maiti, P. K. Ghosh, S. Nandy, K. K. Chattopadhyay, “Effect of Mn doping on the optical and structural properties of ZnO nano/micro-fibrous thin film synthesized by sol–gel technique”, Physica B 387,103-108 (2007)
    [165] S. J. Henley, M. N. R. Ashfold, D. Cherns, “The oriented growth of ZnO films on NaCl substrates by pulsed laser ablation”, Thin Solid Films 422, 69-72 (2002)
    [166] D. C. Agarwal, R. S. Chauhan, D. K. Avasthi, I. Sulania, D. Kabiraj, P. Thakur, K. H. Chae, A. Chawla, R. Chandra, S. B. Ogale, G. Pellegrini, P. Mazzoldi, J. Phys. D: Appl. Phys. 42, 035310 (2009)
    [167] X. L. Wu, G. G. Siu, C. L. Fu, H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films”, Appl. Phys. Lett. 78, 2285-2287 (2001)
    [168] S. S. Shinde, P. S. Shinde, C. H. Bhosade, K. Y. Rajpure, “Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films”, J. Phys. D: Appl. Phys. 41, 105109 (2008)
    [169] K. J. Chen, F. Y. Hung, S. J. Chang, S. J. Young, “Optoelectronic characteristics of UV photodetector based on ZnO nanopillar thin films prepared by sol-gel method”, Mater. Transactions 50 (4), 922-925 (2009)
    [170] B. Vincent Crist, Handbook of monochromatic XPS spectra (The element and native oxides), Wiley (1999)
    [171] J. Szuber, G. Czempik, R. Larciprete, D. Koziej, B. Adamowice, “XPS study of the L-CVD deposited SnO2 thin films exposed to oxygen and hydrogen” Thin Solid Films 391, 198-203 (2001)
    [172] A. Bougrine, M. Addou, A. Kachouance, J. C. Bérnède, M. Morsli, “Structural, optical and cathodoluminescence characteristics of undoped and tin-doped ZnO thin films prepared by spray pyrolysis”, Mater. Chem. Phys. 91, 247-252 (2003)
    [173] O. D. Jayakumar, C. Sudakar, A. Vinu, A. Asthana, A. K. Tyagi, “Effect of surfactant treatment on magnetic properties of Mn doped ZnO bulk and nanoparticles”, J. Phys. Chem. C. 113 (12) , 4814-4819 (2009)
    [174] S. Y. Li, P. Lin, C. Y. Lee, T. Y. Tseng, C. J. Huang, “Effect of Sn dopant on the properties of ZnO nanowires”, J. Phys. D: Appl. Phys. 37, 2274-2282 (2004)
    [175] R. Deng, X. T. Zhang, E. Zhang, Y. Liang, Z. Liu, H. Y. Xu, S. Hark, “Planar defects in Sn-doped single-crystal ZnO nanobelts”, J. Phys. Chem. C 111, 13013-13015 (2007)
    [176] Y. Ortega, P. Fernández, J. Piqueras, “Growth and luminescence of oriented nanoplate arrays in tin doped ZnO”, Nanotechnology 18, 115606 (2007)
    [177] S. A. Studenikin, N. Golego, M. Cocivera, “Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis”, J. Appl. Phys. 84, 2287-2294 (1998)
    [178] R. Deng, X. T. Zhang, “Effect of Sn concentration on structural and optical properties of zinc oxide nanobelts”, J. Luminescence 128, 1442-1446 (2008)
    [179] L. Wang, X. Z. Zhang, X. Liao, W. G. Yang, “A simple method to synthesize single-crystalline Zn2SnO4 (ZTO) nanowires and their photoluminescence properties”, Nanotechnology 16, 2928-2931 (2005)
    [180] S. Venkataraj, S. Hishita, Y. Adachi, I. Sakaguchi, K. Matsumoto, N. Saito, H. Haneda, N. Ohashu, “Structure and electric properties in tin-doped zinc oxide films synthesized by pulsed laser deposition”, J. Electrochem. Soc. 156 (6), H424-H429 (2009)
    [181] S. Calnan, J. Hüpkes, B. Rech, H. Siekmann, A. N. Tiwari, “High deposition rate aluminum-doped ZnO films with highly efficient light trapping for silicon thin film solar cells”, Thin Solid Films 516, 1242-1245 (2008)
    [182] A. M. K. Dagamseh, B. Vet, F. D. Tichellaar, P. Sutta, M. Zeman, “ZnO:Al films prepared by rf magnetron sputtering applied as back reflectors in thin-film silicon solar cells”, Thin Solid Films 516, 7844-7850 (2008)
    [183] T. Minami, “Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications”, Thin Solid Films 516, 1314-1321 (2008)
    [184] T. Koida, H. Fijiwara, M. Kondo, “ Hydrogen-doped In2O3 high-mobility transparent conductive oxide”, J. J. Appl. Phys. 46, L685-L687 (2007)
    [185] M. Okuya, K. Ohashi, T. Yamamoto, J. Madarasz, “Preparation of SnO2 transparent conducting films for dye-sensitized solar cells by SPD technique”, Electrochemistry 76, 132-135 (2008)
    [186] B. Neumann, F. Bierau, B. Johnson, C. A. Kaufmann, K. Ellmer, H. Tributsch, “Niobium-doped TiO2 films as window layer for chalcopyrite solar cells“, Phys. Stat. Sol. (B) 245, 1849-1857 (2008)
    [187] U. S. Joshi, Y. Matsumoto, K. Itaka, M. Sumiya, H. Koinuma, “Combinatorial synthesis of Li-doped NiO thin films and their transparent conducting properties”, Appl. Surf. Sci. 252, 2524-2528 (2006)
    [188] Y. Caglar, S. Ilican, M. Caglar, F. Yakuphanoglu, “Effects of In, Al and Sn dopants on the structural and optical properties of ZnO thin films”, Spectrochimica Acta Part A 6, 1113-11197 (2007)
    [189] J. P. Lin, J. M. Wu, “The effect of annealing process on electronic properties of sol-gel derived Al-doped ZnO films”, Appl. Phys. Lett. 92, 134103 (2008)
    [190] P. K. Biswas, A. De, L. K. Dua, L. Chkoda, “Work function of sol-gel indium tin oxide (ITO) films on glass”, Appl. Surf. Sci. 253, 1953-1959 (2006)
    [191] C. Legnani, S. A. M. Lima, H. H. S. Oliverira, W. G. Quirino, R. Machado, R. M. B. Santos, M. R. Davolos, C. A. Achete, M. Cremona, “Indium tin oxide films prepared via wet chemical route”, Thin Solid Films 516, 193-197 (2007)
    [192] T. Minami, T. Kakumu, K. Shimokawa, S. Takata, “New transparent conducting ZnO-In2O3-SnO2 thin films prepared by magnetron sputtering”, Thin Solid Films 317, 318-321 (1998)
    [193] C. W. Ow-Yang, H. Y. Yeom, D. C. Paine, ”Fabrication of transparent conducting amorphous Zn-Sn-In-O thin films by direct current magnetron sputtering”, Thin Solid Films 516, 3105-3111 (2008)
    [194] K. Tominaga, H. Fukumoto, K. Kondou, Y. Hayashi, K. Murai, T. Moriag, I. Nakabayashi, ”Al-impurity-doped transparent conductive oxide films of In2O3-ZnO system”, Vacuum 74, 683-687 (2004)
    [195] S. W. Ryu, J. S. Hong, S. T. Kim, J. Y. Yang, B. C. Ahn, W. P. Hong, S. H. Park, H. M. Kim, J. J. Kim, ” Properties of In2O3-SnO2 thin films due to the cathode condition in the DC magnetron sputtering process”, J. Korean Phys. Soc. 50, 1833-1837 (2007)
    [196] S. S. Kim, S. Y. Choi, C. G. Park, H. W. Jin, “Transparent conductive ITO thin films through the sol-gel process using metal salts”, Thin Solid Films 347, 155-160 (1999)
    [197] K. Tominaga, T. Takao, A. Fukushima, T. Moriga, I. Nakabayashi, ” Amorphous ZnO–In2O3 transparent conductive films by simultaneous sputtering method of ZnO and In2O3 targets”, Vacuum 66, 505-509 (2002)
    [198] P. Prathap, G. Gowri Devi, Y. P. V. Subbaiah, V. Ganesan, K. T. Ramakrishna Reddy, J. Yi, ”Preparation and characterization of sprayed In2O3:Mo”, Phys. Stat. Sol. (a) 205 (8), 1947-1951 (2008)
    [199 ] J. Steinhauser, S. Faÿ, N. Oliverira, E. Vallat-Sauvain, D. Zimin, U. Kroll, C. Ballif, “Electrical transport in boron-doped polycrystalline zinc oxide thin films“, Phys. Stat. Sol. (a) 205, 1983-1987 (2008)
    [200] H. S. Kang, J. S. Kang, S. S. Pang, E. S. Shim, S. Y. Lee, “Variation of light emitting properties of ZnO thin films depending on post-annealing temperature”, Mater. Sci. Eng. B102, 313-316 (2003)
    [201] R. A. Smith, Semiconductors, 2nd ed., Cambridge Univ. Press, London (1978)
    [202] P. Nunes, A. Malik, B. Fernandes, E. Fortunato, P. Vilarinho, R. Martins, “Influence of the doping and annealing atmosphere on zinc oxide thin films deposited by spray pyrolysis”, Vacuum 52, 45-49 (1999)

    下載圖示 校內:2015-03-15公開
    校外:2015-03-15公開
    QR CODE