簡易檢索 / 詳目顯示

研究生: 廖青瑋
Liao, Ching-Wei
論文名稱: 以多尺度材料模擬技術研究胎面膠料之動態黏彈性質
Dynamic mechanical analysis of tire rubber by multi-scale simulations
指導教授: 許文東
Hsu, Wen-Dung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 70
中文關鍵詞: 天然橡膠分子動力學模擬黏彈性質有限元素法分布效應
外文關鍵詞: molecular dynamics simulations, finite element method, natural rubber, effect of dispersion, viscoelastic properties.
相關次數: 點閱:105下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著節能之概念提升,對於消耗量最大的汽車燃油也開始被仔細審視,其中輪胎是消耗汽車燃油最大量的部位,因此國際上開始對輪胎性能嚴加設限,而輪胎之優劣絕大多是由胎面膠料之黏彈性質所決定,其中天然橡膠是橡膠材料中最古老但也是最主要之原料之一,因此了解天然橡膠之黏彈性質如何受到其他因素影響對於設計開發新式環保配方非常重要。
    本研究是從分子動力學模擬法出發,探討具不同交聯情況及填充劑C60含量的天然橡膠之黏彈性質。對純天然橡膠來說,當分子量足夠高時,分子量對拉伸模數之影響並不明顯,然而不管橡膠中是否有交聯點或是填充劑之存在,應變率都會明顯影響橡膠之拉伸行為,且拉伸模數與應變率之對數會呈現一線性關係;在零剪切黏度方面,分子量與填充情況皆可用理論或經驗式將模擬所求得之數據修正至巨觀物理性質。
    考慮巨觀下天然橡膠之機械性質會受到交聯或者填充不均之情況,本研究以特殊之格狀模型施與一特定頻率之週期性應變透過有限元素法,將分子動力學模擬經修正後之物理性質置入巨觀模型中,配合Kelvin-Voigt黏彈模型進行動態力學模擬。發現在填充劑分布完全均勻的前提下,C60之含量越高相位角會越小,天然橡膠會越接近彈性材料。此外本研究亦以不同的格狀排列代表不同之局域性質分布進行模擬,當施加形變於C60分布不均的天然橡膠上時,應力會由C60濃度較高的部位所承擔,且C60分布越不均,動態力學測試所得到的相位角將越大,橡膠整體會越接近純膠料之黏性行為。

    Since the fuel efficiency and the wet grip performance are closely related to the mechanical properties of tire rubber, it is very important to understanding the underlying mechanisms. Natural rubber is the main ingredient of tire rubber in which other additives were mixed to reach the required mechanical properties, and the mainly interaction of additives with natural rubber is in the form of composite. An objective of producing rubber composites is to distribute (disperse) fillers as homogeneously as possible so that the resulting mechanical properties of the rubber/filler composite will be uniform. However, it is far from easy to control the distribution and dispersion of fillers in a rubber matrix, because of the interaction forces (Van der Waals force) that cause the formations of clusters in as-produced fillers. Here we calculated the mechanical properties of natural rubber with different filler (C60) content by molecular dynamics simulations first, and the results were considered as the properties of local regimes. Then, different regimes were combined into macroscopic model to simulate heterogeneous material via finite element method. The effect of distribution and dispersion of fillers were investigated.
    By the results, we found that the behavior of viscoelastic would be effected by the distribution of filler in rubber matrix. In general, the better the dispersion ability is, the more homogeneous material like.

    中文摘要 I 英文摘要 II 誌謝 XII 總目錄 XIII 圖目錄 XVI 表目錄 XIX 第一章 緒論 1 1.1 簡介 1 1.2 論文架構 3 第二章 文獻回顧 4 2.1 胎面橡膠材料發展近況 4 2.2 橡膠之硫化行為 6 2.3 橡膠填充劑 6 2.4 分子動力學模擬高分子性質相關文獻 7 第三章 分子動力學理論 9 3.1 分子動力學基本理論與流程 9 3.2 勢能函數 9 3.2.1 鍵長勢能 10 3.2.2 鍵角勢能 10 3.2.3 扭轉勢能 11 3.2.4 Lennard-Jones勢能 11 3.3 運動方程式 11 3.3.1 Velocity Verlet 演算法 12 3.4 週期性邊界條件 12 3.5 系綜 13 3.6 原子級應力計算方法 13 3.7 計算效率提升 14 3.7.1 截斷半徑法 14 3.7.2 Verlet 表列法 14 第四章 有限元素法介紹及黏彈理論 19 4.1 有限元素法基礎理論 19 4.2 橡膠黏彈性與黏彈理論 19 第五章 模擬設計與分析方法 22 5.1 本研究模擬流程 22 5.2 分子動力學套件使用及模擬環境設定 22 5.2.1 分子動力學模型建立與平衡 22 5.2.2 勢能函數之選擇 23 5.2.3 橡膠模型之拉伸測試 24 5.2.4 零剪切黏度計算 25 5.3 有限元素法套件使用及模擬環境設定 28 第六章 結果與討論 36 6.1 純順聚異戊二烯模型之平衡 36 6.2 交聯以及添加填充物之橡膠模型平衡 36 6.3 各模型之拉伸行為 37 6.3.1 應變率對拉伸行為之影響 37 6.3.2 聚合度對拉伸行為之影響 38 6.3.3 填充劑對拉伸行為之影響 38 6.4 各橡膠模型之黏度估算 39 6.4.1 純順聚異戊二烯 39 6.4.2 具交聯之橡膠黏度計算 40 6.4.3 具填充劑之橡膠黏度計算 41 6.5 有限元素法模擬黏彈性質 41 6.5.1 收斂測試 42 6.5.2 填充量對動態力學模擬結果之影響 42 6.5.3 分散性對動態力學模擬結果之影響 42 第七章 結論與未來展望 65 7.1 結論 65 7.2 未來展望 66 參考文獻 67

    [1] D. Guseva, P. Komarov, and A. V. Lyulin, "Molecular-dynamics simulations of thin polyisoprene films confined between amorphous silica substrates," The Journal of chemical physics, vol. 140, p. 114903, 2014.
    [2] D. Peirce, C. F. Shih, and A. Needleman, "A tangent modulus method for rate dependent solids," Computers & Structures, vol. 18, pp. 875-887, 1984.
    [3] S. V. Thiruppukuzhi and C. Sun, "Models for the strain-rate-dependent behavior of polymer composites," Composites Science and Technology, vol. 61, pp. 1-12, 2001.
    [4] S. Sen, S. K. Kumar, and P. Keblinski, "Viscoelastic properties of polymer melts from equilibrium molecular dynamics simulations," Macromolecules, vol. 38, pp. 650-653, 2005.
    [5] V. P. Toshchevikov and Y. Y. Gotlib, "Shear dynamic modulus of nematic elastomers: Modified Rouse model," Macromolecules, vol. 42, pp. 3417-3429, 2009.
    [6] V. P. Toshchevikov, G. Heinrich, and Y. Y. Gotlib, "Shear Dynamic Moduli of Stretched Polymer Chains and Networks: Modified Rouse Model," Macromolecular Theory and Simulations, vol. 19, pp. 195-209, 2010.
    [7] M. Vladkov and J. L. Barrat, "Linear and nonlinear viscoelasticity of a model unentangled polymer melt: molecular dynamics and rouse modes analysis," Macromolecular theory and simulations, vol. 15, pp. 252-262, 2006.
    [8] J. Padding and W. Briels, "Systematic coarse-graining of the dynamics of entangled polymer melts: the road from chemistry to rheology," Journal of Physics: Condensed Matter, vol. 23, p. 233101, 2011.
    [9] V. A. Harmandaris, V. G. Mavrantzas, and D. N. Theodorou, "Atomistic molecular dynamics simulation of polydisperse linear polyethylene melts," Macromolecules, vol. 31, pp. 7934-7943, 1998.
    [10] 廖慶復, 黃敏祥, and 蘇皋群, "國外輪胎標籤發展現況與檢測方法," 車輛研測資訊, vol. 090, pp. 14-20, 2012.
    [11] F. Bowden and D. Tabor, "Friction, lubrication and wear: a survey of work during the last decade," British Journal of Applied Physics, vol. 17, p. 1521, 1966.
    [12] D. E. Hall and J. C. Moreland, "Fundamentals of rolling resistance," Rubber chemistry and technology, vol. 74, pp. 525-539, 2001.
    [13] M. S. Evans, Tyre Compounding for Improved Performance vol. 12, 2001.
    [14] A. K. Bhowmick, Current topics in elastomers research: CRC press, 2008.
    [15] Y. Feng and H. J. Graf, "Epdm compounds for dynamic applications," ed: Google Patents, 2003.
    [16] E. Guth, "Theory of filler reinforcement," Journal of applied physics, vol. 16, pp. 20-25, 1945.
    [17] F. Bueche, "Mullins effect and rubber–filler interaction," Journal of applied polymer Science, vol. 5, pp. 271-281, 1961.
    [18] J. L. Leblanc, "Rubber–filler interactions and rheological properties in filled compounds," Progress in polymer science, vol. 27, pp. 627-687, 2002.
    [19] N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga, "Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor," Acta Materialia, vol. 56, pp. 2929-2936, 2008.
    [20] M. Moniruzzaman and K. I. Winey, "Polymer nanocomposites containing carbon nanotubes," Macromolecules, vol. 39, pp. 5194-5205, 2006.
    [21] P.-C. Ma, N. A. Siddiqui, G. Marom, and J.-K. Kim, "Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review," Composites Part A: Applied Science and Manufacturing, vol. 41, pp. 1345-1367, 2010.
    [22] J. H. Koo, Polymer nanocomposites: McGraw-Hill Professional Pub., 2006.
    [23] A. Adnan, C. Sun, and H. Mahfuz, "A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites," Composites Science and Technology, vol. 67, pp. 348-356, 2007.
    [24] N. G. Sahoo, S. Rana, J. W. Cho, L. Li, and S. H. Chan, "Polymer nanocomposites based on functionalized carbon nanotubes," Progress in polymer science, vol. 35, pp. 837-867, 2010.
    [25] J. Han, R. H. Gee, and R. H. Boyd, "Glass transition temperatures of polymers from molecular dynamics simulations," Macromolecules, vol. 27, pp. 7781-7784, 1994.
    [26] R. Khare, J. J. de Pablo, and A. Yethiraj, "Rheology of confined polymer melts," Macromolecules, vol. 29, pp. 7910-7918, 1996.
    [27] A. Jabbarzadeh, J. Atkinson, and R. Tanner, "Effect of molecular shape on rheological properties in molecular dynamics simulation of star, H, comb, and linear polymer melts," Macromolecules, vol. 36, pp. 5020-5031, 2003.
    [28] P. S. Stephanou, C. Baig, G. Tsolou, V. G. Mavrantzas, and M. Kröger, "Quantifying chain reptation in entangled polymer melts: Topological and dynamical mapping of atomistic simulation results onto the tube model," The Journal of chemical physics, vol. 132, p. 124904, 2010.
    [29] D. M. Dewitt, M. J. Finley, L. R. Lawin, and H. R. Malinoff, "Coating compositions for bioactive agents," ed: Google Patents, 2009.
    [30] J. Irving and J. G. Kirkwood, "The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics," The Journal of chemical physics, vol. 18, pp. 817-829, 1950.
    [31] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, "A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters," The Journal of Chemical Physics, vol. 76, pp. 637-649, 1982.
    [32] R. Clausius, "XVI. On a mechanical theorem applicable to heat," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 40, pp. 122-127, 1870.
    [33] L. Verlet, "Computer" experiments" on classical fluids. ii. equilibrium correlation functions," Physical Review, vol. 165, p. 201, 1968.
    [34] U. Gedde, Polymer physics: Springer Science & Business Media, 1995.
    [35] S. L. Mayo, B. D. Olafson, and W. A. Goddard, "DREIDING: a generic force field for molecular simulations," Journal of Physical Chemistry, vol. 94, pp. 8897-8909, 1990.
    [36] A. Mulliken and M. Boyce, "Mechanics of the rate-dependent elastic–plastic deformation of glassy polymers from low to high strain rates," International journal of solids and structures, vol. 43, pp. 1331-1356, 2006.
    [37] Y. Zhou and P. Mallick, "Effects of temperature and strain rate on the tensile behavior of unfilled and talc-filled polypropylene. Part I: Experiments," 2002.
    [38] C. Roland, "Mechanical behavior of rubber at high strain rates," Rubber Chemistry and Technology, vol. 79, pp. 429-459, 2006.
    [39] C. Roland, J. Twigg, Y. Vu, and P. Mott, "High strain rate mechanical behavior of polyurea," Polymer, vol. 48, pp. 574-578, 2007.
    [40] L. J. Fetters, D. J. Lohse, S. T. Milner, and W. W. Graessley, "Packing length influence in linear polymer melts on the entanglement, critical, and reptation molecular weights," Macromolecules, vol. 32, pp. 6847-6851, 1999.
    [41] K. Broderix, H. Löwe, P. Müller, and A. Zippelius, "Shear viscosity of a crosslinked polymer melt," EPL (Europhysics Letters), vol. 48, p. 421, 1999.
    [42] R. Everaers, S. K. Sukumaran, G. S. Grest, C. Svaneborg, A. Sivasubramanian, and K. Kremer, "Rheology and microscopic topology of entangled polymeric liquids," Science, vol. 303, pp. 823-826, 2004.
    [43] S. Edwards and T. A. Vilgis, "The tube model theory of rubber elasticity," Reports on Progress in Physics, vol. 51, p. 243, 1988.
    [44] P. Cassagnau, "Linear viscoelasticity and dynamics of suspensions and molten polymers filled with nanoparticles of different aspect ratios," Polymer, vol. 54, pp. 4762-4775, 2013.
    [45] H. A. Barnes, J. F. Hutton, and K. Walters, An introduction to rheology vol. 3: Elsevier, 1989.
    [46] J. Bicerano, J. F. Douglas, and D. A. BRUNE, "Model for the viscosity of particle dispersions," 1999.
    [47] A. Gent, "Rubber elasticity: basic concepts and behavior," Science and Technology of Rubber, p. 1, 1978.
    [48] M. Abdel-Goad, W. Pyckhout-Hintzen, S. Kahle, J. Allgaier, D. Richter, and L. J. Fetters, "Rheological properties of 1, 4-polyisoprene over a large molecular weight range," Macromolecules, vol. 37, pp. 8135-8144, 2004.
    [49] N. A. Salleh, M. H. Abidin, and A. Z. Romli, "The Effect of Carbon Black and Types of Glass Fibre in Natural Rubber Latex Composite," Journal of Engineering Science, vol. 9, pp. 79-87, 2013.
    [50] Y. Wang, X. Han, J. Pan, and C. Sinka, "An entropy spring model for the Young’s modulus change of biodegradable polymers during biodegradation," Journal of the mechanical behavior of biomedical materials, vol. 3, pp. 14-21, 2010.
    [51] L. M. Nicholson, K. S. Whitley, T. S. Gates, and J. A. Hinkley, "How molecular structure affects mechanical properties of an advanced polymer," in INTERNATIONAL SAMPE SYMPOSIUM AND EXHIBITION, 1999, pp. 794-808.
    [52] P. Theocaris, G. Papanicolaou, and E. Kontou, "The effect of filler-volume fraction and strain rate on the tensile properties of iron-epoxy particulate composites," Journal of Reinforced Plastics and Composites, vol. 1, pp. 206-224, 1982.
    [53] L. Cohen and O. Ishai, "Strain-rate dependence of the elastic modulus of filled and porous epoxy composites," International Journal of Mechanical Sciences, vol. 9, pp. 605-608, 1967.

    下載圖示 校內:2018-09-10公開
    校外:2018-09-10公開
    QR CODE