簡易檢索 / 詳目顯示

研究生: 徐士軒
Hsu, Shih-Hsuan
論文名稱: 二氧化鈰/摻氟氧化錫酸鹼度感測器之製備研究
Preparation of Ceria/FTO based pH Sensors
指導教授: 陳慧英
Chen, Huey-Ing
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 99
中文關鍵詞: 二氧化鈰pH感測器摻化氧化錫延伸式閘極場效電晶體
外文關鍵詞: CeO2, pH sensor, FTO, EGFET
相關次數: 點閱:91下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以二氧化鈰/摻氟氧化錫(CeO2/FTO)感測膜製作延伸式閘極場效電晶體式(EGFET)酸鹼度感測器,旨在探討製備變因對薄膜性質及感測特性之影響,並找尋最佳製備條件。
    研究中首先以FTO製作元件,在20oC下進行pH感測之探討。結果發現,FTO元件在pH 4-10間具有相當良好之感測靈敏度(74.9 mV/pH),但因耐酸鹼性不佳,因此pH量測範圍受限。為改善FTO膜性質及pH感測特性,本研究中提出以CeO2奈米粒子來修飾FTO膜,製成CeO2/FTO感測元件。
    實驗中採用沉澱法來製備CeO2奈米粒子,並以旋轉塗佈方式沉積於FTO基材上;改變製備條件,包括:固含量、塗佈轉速、煅燒溫度、沉澱劑濃度及塗佈次數等來加以探討。結果發現,隨固含量或塗佈次數增加時,CeO2沉積量隨之增加,膜表面之活性座亦增加,因此元件之pH感測靈敏度增高;但當沉積量過高時,由於膜層電阻遽增,導致靈敏度下降。當煅燒溫度提升時,由於CeO2晶粒增大,有利於訊號傳遞,而致靈敏度增高;但若提高沉澱劑濃度時,所得CeO2粒徑增大,造成膜表面活性座減少,故使靈敏度下降。實驗結果亦顯示,CeO2/FTO元件之最佳製備條件為:沉澱劑濃度3 M、固含量0.5 wt%、塗佈轉速2000 rpm、煅燒溫度600 oC、塗佈一次;在20oC下、pH 1-13間,該元件(S05R20T6)之感測靈敏度可達75.1±0.9 mV/pH,遠高於Nernstian極限(即58.2 mV/pH @ 20oC),線性度為0.9997,感測範圍為pH 1-13。此外,由溫度、遲滯、時漂等效應及選擇性之探討結果發現,此元件之耐酸鹼性良好、耐用性長、穩定性佳、離子選擇性高,且量測範圍寬廣;尤值一提的是,遲滯壓差僅8.9 mV,與FTO元件(遲滯壓差39.2 mV)相比較,更顯示此元件之感測優勢。
    綜上所述,以CeO2奈米粒子來修飾FTO元件,確能改善感測膜層之耐酸鹼性,進而提升CeO2/FTO元件對pH之感測性能,因此元件在應用上具有極佳之發展潛力。

    In this work, CeO2/FTO pH sensors based on extended gate field-effect transistor (EGFET) were fabricated. The influences of preparation variables on properties of CeO2/FTO films were investigated. The sensing characteristics of CeO2/FTO devices toward pH were also studied for searching an optimum preparation condition. Experimentally, CeO2 nanoparticles prepared by the precipitation method were spin-coated on the FTO substrate. The influences of preparation variables including solid content, spinning rate, calcination temperature, precipitant concentration and coating cycle on the pH sensing characteristics of resulting devices were studied. Among the studied CeO2/FTO devices, the best device (S05R20T6) demonstrated excellent sensing characteristics with super-Nernst limit sensitivity of 75.1 mV/pH (58.2 mV/pH @ 20 oC) and the linearity of 0.9997 at 20 oC, which was prepared under precipitant concentration of 3 M, solid content of 0.5 wt%, spinning rate of 2000 rpm, calcination temperature of 600 oC and spin cycle of 1. From the investigation of temperature, hysteresis, drift and selectivity, it indicated that the S05R20T6 device showed good acidic and alkaline resistances, long-term durability, high stability and selectivity, suitable to be used over a wide pH range. In conclusion, the CeO2/FTO device indeed exhibited excellent sensing performance superior to FTO device, especially promoting the ability against extreme pH conditions. Accordingly, it is prospective that the CeO2/FTO device have great promising potential in pH measurements for wide applications.

    總目錄 摘 要 I Extended Abstract III 誌謝 XI 總目錄 XII 表目錄 XVI 圖目錄 XVII 符號說明 XXI 第一章 緒論 1 1.1 前言 1 1.2 場效電晶體式pH感測器之簡介 1 1.3 二氧化鈰 3 1.3.1 結構與性質 3 1.3.2 粉體或薄膜製備 3 1.4 研究動機 4 第二章 原理 7 2.1 以沉澱法製備CeO2奈米粉體 7 2.2 場效電晶體基礎理論 8 2.3 離子感測場效電晶體操作原理 9 2.4 延伸式閘極場效電晶體操作原理 9 2.5 表面吸附座鍵結模型 10 第三章 實驗 13 3.1 藥品及材料 13 3.2 實驗設備及分析儀器 13 3.2.1 實驗設備 13 3.2.2 分析儀器 14 3.3 實驗步驟 15 3.3.1 元件製備 15 3.3.2 pH感測 17 第四章 CeO2/FTO元件製備與pH感測特性探討 23 4.1 FTO基材性質及pH感測特性 23 4.1.1 FTO基材表面特性 23 4.1.2 FTO膜之導電性及熱穩定性 23 4.1.3 FTO膜之耐酸鹼性 24 4.2 CeO2奈米粒子及分散液特性 25 4.2.1 XRD分析結果 25 4.2.2 TEM分析結果 26 4.2.3 BET分析結果 26 4.2.4 TGA分析結果 26 4.3 CeO2固含量對CeO2/FTO感測膜特性之影響 27 4.3.1 CeO2/FTO感測膜表面形態 27 4.3.2 CeO2/FTO感測膜表面粗糙度 27 4.3.3 CeO2/FTO感測膜之片電阻 28 4.3.4 CeO2/FTO元件之pH感測特性 28 4.4 塗佈轉速之影響 29 4.4.1 CeO2/FTO感測膜之表面形態 29 4.4.2 CeO2/FTO感測膜之薄膜粗糙度 29 4.4.3 CeO2/FTO元件之pH感測特性 30 4.5 煅燒溫度之影響 30 4.5.1 CeO2/FTO元件之pH感測特性 30 4.6 CeO2粒徑之影響 30 4.6.1 CeO2/FTO感測膜之表面形態 31 4.6.2 CeO2/FTO元件之pH感測特性 31 4.7 旋轉塗佈次數之影響 31 4.7.1 CeO2/FTO感測膜之表面形態 31 4.7.2 CeO2/FTO元件之pH感測特性 32 4.8 最佳感測元件之pH感測特性探討 32 4.8.1 三端電性量測 32 4.8.2 遲滯效應 32 4.8.3 時漂效應 33 4.8.4 鈉離子干擾 33 4.8.5 操作溫度之影響 33 4.8.6 長期使用性能之探討 34 第五章 結論與建議 89 5.1 結論 89 5.2 建議 91 參考文獻 92

    1. P. Salvo, N. Calisi, B. Melai, B. Cortigiani, M. Mannini, A. Caneschi, G. Lorenzetti, C. Paoletti, T. Lomonaco, A. Paolicchi, I. Scataglini, V. Dini, M. Romanelli, R. Fuoco, and F. Di Francesco, “Temperature and pH sensors based on graphenic materials”, Biosens. Bioelectron., 91, 870-877, 2017.
    2. S. Nakata, T. Arie, S. Akita, and K. Takei, “Wearable, flexible, and multifunctional healthcare device with an ISFET chemical sensor for simultaneous sweat pH and skin temperature monitoring”, ACS Sens., 2, 443-448, 2017.
    3. M. Glanc-Gostkiewicz, M. Sophocleous, J. K. Atkinson, and E. Garcia-Breijo, “Performance of miniaturised thick-film solid state pH sensors”, Sens. Actuators A: Phys., 202, 2-7, 2013.
    4. W. Vonau, and U. Guth, “pH monitoring: a review”, J. Solid State Electrochem., 10, 746-752, 2006.
    5. 李育儒, 陳良基, “台灣高科技產業的推進器—半導體科技”, 科學發展, 457, 2011.
    6. P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements”, IEEE Trans. Biomed. Eng., 17, 70-71, 1970.
    7. C. S. Lai, C. E. Lue, C. M. Yang, G. Dorota, and Pijanowska, “Fluorine incorporation and thermal treatment on single and stacked Si3N4 membranes for ISFET/REFET application”, J. Electrochem. Soc., 157, J8-J12, 2010.
    8. A. Sardarinejad, D. K. Maurya, and K. Alameh, “The effects of sensing electrode thickness on ruthenium oxide thin-film pH sensor”, Sens. Actuators A: Phys., 214, 15-19, 2014.
    9. T. M. Pan, C. W. Wang, and S. Y. Pan, “High-performance electrolyte–insulator–semiconductor pH sensors using high-κ CeO2 sensing films”, IEEE Electron Device Lett., 36, 11, 1195-1197, 2015.
    10. T. Y. Kim, and S. Yang, “Fabrication method and characterization of electrodeposited and heat-treated iridium oxide films for pH sensing”, Sens. Actuators B: Chem., 196, 31-38, 2014.
    11. P. Bergveld, “Thirty years of ISFETOLOGY what happened in the past 30 years and what may happen in the next 30 years”, Sens. Actuators B: Chem., 88, 1-20, 2003.
    12. E. M. Guerra, and M. Mulato, “Synthesis and characterization of vanadium oxide/hexadecylamine membrane and its application as pH-EGFET sensor”, J Sol-Gel Sci Technol, 52, 315-320, 2009.
    13. J. L. Chiang, and C. Y. Kuo, “Study on the characterizations and applications of the pH-sensor with GZO/Glass extended-gate FET”, Nanoelectronics Conference (INEC), IEEE 5th International, 2013.
    14. J. van der Spiegel, I. Lauks, P. Chan, and D. Babic, “The extended gate chemically sensitive field effect transistor as multi-species microprobe”, Sens. Actuators B: Chem., 4, 291-298, 1983.
    15. F. A. Sabah, N. M. Ahmed, Z. Hassan, and M. A. Almessiere, “Study effects of thin film thickness on the behavior of CuS EGFET implemented as pH sensor”, Dig. J. Nanomater. Bios., 11, 3, 787-793, 2016.
    16. M. A. Zulkefle, R. A. Rahman, K. A. Yusof, W. F. H. Abdullah, M. R. Mahmood, and S. H. Herman, “Metal oxide thin films as pH sensing membrane for extended gate field effect transistor”, Jurnal Teknologi, 78, 5-8, 95-100, 2016.
    17. N. M. Abd-Alghafour, N. M. Ahmed, Z. Hassan, M. A. Almessiere, M. Bououdina, and N. H. Al-Hardan, “High sensitivity extended gate effect transistor based on V2O5 nanorods”, J. Mater. Sci. Mater. Electron., 28, 1364-1369, 2017.
    18. L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study on extended gate field effect transistor with tin oxide sensing membrane”, Mater. Chem. Phys., 63, 19-23, 2000.
    19. J. L. Wang, P. Y. Yang, T. Y. Hsieh, and P. C. Juan, “Ionic pH and glucose sensors fabricated using hydrothermal ZnO nanostructures”, Jpn. J. Appl. Phys., 55, 01AE16, 2016.
    20. P. Esteban, B. Christina, R. R. Ciril, B. Fernando, A. Omar, and K. Wolfgang, “Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications”, Biosens. Bioelectron., 92, 661-667, 2017.
    21. A. Sardarinejad, D. K. Maurya, and K. Alameh, “The pH sensing properties of RF sputtered RuO2 thin-film prepared using different Ar/O2 flow ratio”, Materials, 8, 3352-3363, 2015.
    22. T. M. Pan, C. W. Wang, Y. S. Huang, W. H. Weng, and S. T. Pang, “Effect of postdeposition annealing on the structural and sensing characteristics of Tb2O3 and Tb2Ti2O7 sensing films for electrolyte-insulator-semiconductor pH sensors”, J. Electrochem. Soc., 162, 4, B83-B88, 2015.
    23. J. Y. Oh, H. J. Jang, W. J. Cho, and M. S. Islam, “Highly sensitive electrolyte-insulator-semiconductor pH sensors enabled by silicon nanowires with Al2O3/SiO2 sensing membrane”, Sens. Actuators B: Chem., 171-172, 238-243, 2012.
    24. N. C. S. Vieira, A. Figueiredo, A. D. Faceto, A. A. A. de Queiroz, V. Zucolotto, and F. E. G. Guimaraes, “Dendrimers/TiO2 nanoparticles layer-by-layer films as extended gate FET for pH detection”, Sens. Actuators B: Chem., 169, 397-400, 2012.
    25. K. A. Yusof, R. A. Rahman, M. A. Zulkefle, S. H. Herman, and W. F. H. Abdullah, “pH sensitivity dependency on the annealing temperature of spin-coated titanium dioxide thin films”, Jurnal Teknologi, 78, 5-8, 39-44, 2016.
    26. P. C. Yao, J. L. Chiang, and M. C. Lee, “Application of sol-gel TiO2 film for an extended-gate H+ ion-sensitive field-effect transistor”, Solid State Sci., 28, 47-54, 2014.
    27. M. A. Zulkefle, R. A. Rahman, K. A. Yusof, W. F. H. Abdullah, M. Rusop, and S. H. Herman, “Spin speed and duration dependence of TiO2 thin films pH sensing behavior”, J. Sensors, 1-8, 2016.
    28. 張晞硯, “延伸閘極式金屬氧化物酸鹼度感測器之製備與特性探討”, 成功大學化學工程學系碩士論文, 2013.
    29. Y. H. Liao, and J. C. Chou, “Preparation and characteristics of ruthenium dioxide for pH array sensors with real-time measurement system”, Sens. Actuators B: Chem., 128, 603-612, 2007.
    30. N. H. Al-Hardan, M. A. A. Hamid, N. M. Ahmed, A. Jalar, R. Shamsudin, N. K. Othman, L. K. Keng, W. Chiu, and H. N. Al-Rawi, “High sensitivity pH sensor based on porous silicon (PSi) extended gate field-effect transistor”, Sensors, 16, 839, 2016.
    31. H. H. Li, W. S. Dai, J. C. Chou, and H. C. Cheng, “An extended-gate field-effect transistor with low-temperature hydrothermally synthesized SnO2 nanorods as pH sensor”, IEEE Electron Device Lett., 33, 10, 1495-1497, 2012.
    32. H. H. Li, C. E. Yang, C. C. Kei, C. Y. Su, W. S. Dai, J. K. Tseng, P. Y. Yang, J. C. Chou, and H. C. Cheng, “Coaxial-structured ZnO/silicon nanowires extended-gate field-effect transistor as pH sensor”, Thin Solid Films, 529, 173-176, 2013.
    33. B. R. Huang, J. C. Lin, and Y. K. Yang, “ZnO/silicon nanowire hybrids extended-gate field-effect transistors as pH sensors”, J. Electrochem. Soc., 160, 6, B78-B82, 2013.
    34. A. Das, D. H. Ko, C. H. Chen, L. B. Chang, C. S. Lai, F. C. Chu, L. Chow, and R. M. Lin, “Highly sensitive palladium oxide thin film extended gate FETs as pH sensor”, Sens. Actuators B: Chem.,205, 199-205, 2014.
    35. J. Graciani, A. M. Marquez, J. J. Plata, Y. Ortega, N. C. Hernandez, A. Meyer, C. M. Zicovich-Wilson, and J. F. Sanz, “Comparative study on the performance of hybrid DFT functionals in highly correlated oxides: The case of CeO2 and Ce2O3”, J. Chem. Theory Comput., 7, 56-65, 2011.
    36. H. J. Quah, Z. Hassan, F. K. Yam, N. M. Ahmed, M. A. M. Salleh, K. A. Matori, and W. F. Lim, “Effects of ammonia-ambient annealing on physical and electrical characteristics of rare earth CeO2 as passivation film on silicon”, J. Alloys Compd., 695, 3104-3115, 2017.
    37. V. Stetsovych, F. Pagliuca, F. Dvorak, T. Duchon, M. Vorokhta, M. Aulicka, J. Lachnitt, S. Schernich, I. Matolinova, K. Veltruska, T. Skala, D. Mazur, J. Myslivecek, J. Libuda, and V. Matolin, “Epitaxial Cubic Ce2O3 Films via Ce−CeO2 Interfacial Reaction”, J. Phys. Chem. Lett., 4, 866-871, 2013.
    38. P. Kumar, P. Kumar, A. Kumar, I. Sulania, F. Chand, and K. Asokan, “Structural, optical and magnetic properties of N ion implanted CeO2 thin films”, RSC Adv., 7, 9160, 2017.
    39. R. Murugan, G. Vijayaprasath, M. Thangaraj, T. Mahalingam, S. Rajendran, M. Arivanandhan, A. Loganathan, Y. Hayakawa, and G. Ravi, “Defect assisted room temperature ferromagnetism on RF sputtered Mn doped CeO2 thin films”, Ceram. Int., 43, 399-406, 2017.
    40. J. A. Katalenich, “Production of cerium dioxide microspheres by an internal gelation sol–gel method”, J Sol-Gel Sci. Technol., 82, 654-663, 2017.
    41. F. Meng, R. Qin, Z. Fan, C. Zhang, and L. Su, “Effect of urea on the morphology and room temperature ferromagnetism of CeO2 microstructures synthesized by hydrothermal method”, J. Mater. Sci. Mater. Electron, 28, 6169-6175, 2017.
    42. X. Huang, H. Liu, J. Liu, and H. Liu, “Synthesis of micro sphere CeO2 by a chemical precipitation method with enhanced electrochemical performance”, Mater. Lett., 193, 115-118, 2017.
    43. S. J. Jeyakumar, T. Dhanushkodi, I. K. Punithavathy, and M. Jothibas, “A facile route to synthesis of hexagonal shaped CeO2 nanoparticles”, J. Mater. Sci. Mater. Electron, 28, 3740-3745, 2017.
    44. 張宏毅, “二氧化鈰奈米粉體之晶形操控-製備、特性分析及氧化催化活性”, 成功大學化學工程學系碩士論文, 2005.
    45. P. L. Chen, and I. W. Chen, “Reactive cerium(IV) oxide powders by the homogeneous precipitation method”, J. Am. Ceram. Soc., 76, 1577-1583, 1993.
    46. 張順雄, 張忠誠, 李榮乾 譯, “電子元件與電路理論 上冊”, 東華書局, 291-342, 1997.
    47. 馮文昕, “磁場對二氧化鈦粒子之zeta電位的影響”, 國立台灣大學碩士論文, 1999.
    48. D. E. Yate, S. Levine, and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface”, J. Chem. Soc. Faraday Trans. I, 70, 1807-1818, 1974.
    49. J. C. Chou, C. W. Chen, “Fabrication and application of ruthenium-doped titanium dioxide films as electrode material for ion-sensitive extended-gate FETs”, IEEE Sens. J., 9, 277-284, 2009.
    50. M. J. Schoning, A. Simonis, C. Ruge, H. Ecken, M. Muller-Veggian, and H. Luth, “a bio-chemical field-effect sensor with macroporous Si as substrate material and a SiO2/LPCVD-Si3N4 double layer as pH transducer”, Sensors, 2, 11-22, 2002.
    51. C. L. Wu, J. C. Chou, W. Y. Chung, T, P. Sun, and S. K. Hsiung, “Study on SnO2/Al/SiO2/Si ISFET metal light shield” Mater. Chem. Phys., 63, 153-156, 2000.
    52. E. Gileadi, E. Kirowa-Eisner, and J. Penciner, “Interfacial electrochemistry, an experimental approach”, Addison-Wesley Publishing Company Inc., 4-6, 1975.
    53. L. T. Yin, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study of indium tin oxide thin film for separative extended gate ISFET”, Mater. Chem. Phys., 70, 12-16, 2001.
    54. Y. H. Liao, and J. C. Chou, “Fabrication and chacterization of a ruthenium nitride membrane for electrochemical pH sensors”, Sensors, 9, 2478-2490, 2009.
    55. S. Xu, C. H. Zhou, Y. Yang, H. Hu, B. Sebo, B. L. Chen, Q. D. Tai, and X. Z. Zhao, “Effects of ethanol on optimizing porous films of dye-sensitized solar cells”, Energy Fuels, 25, 1168-1172, 2011.
    56. R. M. Ramli, F. K. Chong, A. A. Omar, and T. Murugesan, “Performance of surfactant assisted synthesis of Fe/TiO2 on the photodegradation of diisopropanolamine”, Clean-Soil Air Water, 43, 690-697, 2015.
    57. H. Kozuka, and S. Sakka, Vol. I in handbook of “Sol-gel science and technology processing characterization and applications”, Kluwer Academic Publishers, 72-73, 2005.
    58. 楊政憲, “以溶膠凝膠法製備二氧化鈦酸鹼度感測器之研究”, 成功大學化學工程學系碩士論文, 2013.
    59. C. H. Kao, C. W. Chang, Y. T. Chen, W. M. Su, C. C. Lu, C. Y. Lin, and H. Chen, “Influence of NH3 plasma and Ti doping on pH-sensitive CeO2 electrolyte-insulator semiconductor biosensors”, Sci. Rep., 7, 2405, 2017.

    下載圖示 校內:2022-08-24公開
    校外:2022-08-24公開
    QR CODE