簡易檢索 / 詳目顯示

研究生: 吳瑞芳
Wu, Rui-Fang
論文名稱: 網狀晶之穩態成長有限元素模式分析
The Finite Element Method Analysis of Steady State Cellular Growth
指導教授: 趙隆山
Chao, Long-Sun
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 63
中文關鍵詞: 凝固微結構網狀晶成長自我滿足之形狀
外文關鍵詞: cellular growth, solidification microstructure, self-consistent shape
相關次數: 點閱:61下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在凝固的過程中,凝固材料之顯微結構與材料之品質與物理特性有著很密切的關係,而溫度場和濃度場之變化又影響到材料之顯微結構。因此,在本文的研究中,希望藉由模擬網狀晶之成長模式,來了解凝固時鑄件顯微結構之變化。首先是以含向前擴散之謝荷方程式為基礎,求得網狀晶之初始形狀,接著進一步建立包含溫度及濃度場、表面能效應及原子附著效應之完整成長模式。在液固界面上,使用直接法調整液固界面之位置,以迭代方式求得自我滿足之形狀。數值方法為有限元素法,而在求解矩陣中,利用LU分解法配合天空線存取模式,可減少記憶空間與增快求解速度。接著利用此模式來探討在不同初始濃度、成長速率、溫度梯度及網狀晶間距對網狀晶形狀之影響。期望本文之分析結果可做為進一步研究之參考。

      In a process of solidification, the variations of the temperature and concentration fields will directly affect the microstructures of materials, which have very close relations with the qualities of materials. In this paper, a mathematical model is built to study the cellular growth. Firstly, the Scheil equation with forward diffusion is used to calculate the initial cellular shape. Secondly, a complete model is set up, including the temperature and concentration fields and the effects of capillarity and atomic attachment. The numerical method is the finite element method and the skyline storage mode and the LU decomposition method are used to solve the matrix equations. In the proposed model, the shape of the solid/liquid interface of cellular growth is not known a priori, rather it is calculated as part of solution to the field problem. The direct iteration method is utilized to compute the self-consistent cellular shape. In this paper, the effects of different control parameters, which are growth rate, temperature gradient and the initial concentration, are investigated. It is hoped that the results of this study can be referred to for the further study.

    目錄 摘要……………………………………………………...Ⅰ 目錄……………………………………………………...Ⅱ 表目錄…………………………………………………...Ⅳ 圖目錄……………………………………………….....Ⅴ 符號說明………………………………………………… Ⅶ 第一章 緒論………………………………........1 1-1 前言…………………………………………… ....1 1-2 文獻回顧……………………………………… ....4 1-3 研究目的……………………………………… ....6 第二章 理論分析…………………………………......7 2-1 初始之網狀晶形狀…………………………...7 2-2 完整模式…………………………………....11 第三章 數值方法………………………………….....16 3-1 加勒金法…………………………………....16 3-2 三角形元素………………………………........17 3-3溫度場之元素方程式……………………….......19 3-4 濃度場之元素方程式………………………......21 3-5 解法、收斂條件及求解流程………………......24 第四章 結果與討論……………………………….....27 4-1天空線(skyline)存取模式….…………………...27 4-2錫鉛合金之網狀晶形狀…………………….......29 4-3 網狀晶溫度分佈……………………………......30 4-4 網狀晶濃度分佈……………………………......31 4-5 原子附著效應……………………………........35 4-6各項控制參數對網狀晶之影響…………….......35 4-6-1 初始濃度……………………………..........36 4-6-2 成長速率………………………………........36 4-6-3 溫度梯度…………………………………......38 4-6-4 網狀晶間距………………………………......39 第五章 結論……………………………………….....41 參考文獻……………………………….……………… 42 附錄A…………………………………………………… 44 附錄B…………………………………………………… 50 附錄C…………………………………………………...54 附錄D…………………………………………………… 58 表目錄 表4-1 Sn-1.5wt%Pb之材料性質………………........28 表4-2 高斯消去法、天空線儲存模式與LU分解法之 CPU計算時間比較表........................29 圖目錄 圖1-1 液固界面型態示意圖……………………........3 圖2-1 網狀晶成長之示意圖……………………........7 圖2-2 液相線與固相線為線性之相圖…………........8 圖2-3 網狀晶成長之計算模式示意圖…………….....12 圖3-1 三節點三角形元素之示意圖……………….....18 圖3-2 解題之流程圖…………………………….......26 圖4-1 網狀晶初始與最後收斂形狀比較圖……….....29 圖4-2 網狀晶之溫度分佈………………………….....30 圖4-3 FBC軸與另一對稱邊(即上圖之ED邊界)的位 置溫度關係圖…...........................31 圖4-4 網狀晶頂部(z=0.244mm)附近,FBC軸與另一對 稱邊(即下圖之ED邊界)的位置溫度關係圖…….31 圖4-5 網狀晶之濃度分佈………………………….....33 圖4-6 ABC軸與另一對稱邊(即上圖之ED邊界)的位 置濃度關係圖............................33 圖4-7 網狀晶頂部(z=0.244mm)附近,FBC軸與另一 對稱邊(即上圖之ED邊界)的位置濃度關係圖….34 圖4-8 中心軸與另一對稱邊(即上圖之ED邊界)的位 置濃度關係圖…..34 圖4-9 為Sn-1.5wt%Pb合金,成長速率為50mm/sec, 外加溫度梯度為2K/mm:原子附著之動力過冷 之對網狀晶影響….........................35 圖4-10 初始濃度對網狀晶形狀之關係圖……........36 圖4-11 成長速率對網狀晶形狀之關係圖……........37 圖4-12 成長速率與網狀晶頂部過冷之關係圖…………38 圖4-13 溫度梯度對網狀晶形狀之關係圖………......39 圖4-14 溫度梯度與網狀晶頂部過冷之關係圖………..39 圖4-15 網狀晶間矩對網狀晶形狀之關係圖……………40 圖4-16 網狀晶間距與網狀晶頂部過冷之關係圖………40 圖A-1 網狀晶成長之示意圖…………………………….44 圖A-2 微小體積之fS 與fL的示意圖……………………44 圖A-3 相鄰兩個時間步伐之體積比與濃度的變化示意 圖.......................................45 圖A-4 相鄰兩個時間步伐之體積比的變化示意圖…….47 圖A-5 網狀晶頂部前之控制體積的示意圖…………….48 圖B-1溫度場之邊界條件示意圖…………………………50 圖B-2在液固界面之元素圖………………………………53 圖C-1濃度場之邊界條件示意圖…………………………54

    1.Flemings, M.C., Solidification Processing, McGraw-Hill Book Company, New York, USA, 1974.

    2.Kurz, W., and D.J. Fisher, Fundamentals of Solidification, 4th ed., Trans Tech Publication, Aedermannsdrof, Switzerl and, 1998.

    3.Gruzleski, J.E., and B.M. Closset, The Treatment of Liquid Aluminum- Silicon Alloys, The American Foundarymen’s Society, 1990.

    4.Bates, C.E.,“Alloy Elements Effects on Gray Iron Properties: Part Ⅱ,”AFS Transactions, Vol. 94, pp. 889-912, 1986.

    5.Sachar, H. and J.F. Wallace, Effect of Microstructure and Testing Mode on the Fatigure Properties of Gray Iron, AFS Transactions, Vol. 90, pp. 777-793, 1982.

    6.Kasap, S., Principles of Electrical Engineering Material and Devices, revised Edition, McGraw-Hill Book company, New York, USA, 2000.

    7.Desbiolles, J.D., J.J. Droux, and M. Rappaz, Simulation of Solidification of Alloys by the Finite-Element Method, Computer Physics Reports, Vol. 6, pp. 371-383, 1987.

    8.Gandin, Ch.-A., M. Rappaz, and R. Tinillier, Three-Dimension Probabilistic Simulation of Solidification Grain Structure Application to Superalloy Precision Casting, Metallurgical Transactions A, Vol. 24A, pp. 467-479, 1993.

    9.Kurz, W., Microsegregation in Rapidly Solidified Ag-15wt-percent- Cu, Journal of Crystal Growth, Vol. 91, pp. 123-125, 1988.

    10.Rappaz, M., and Gandin, Ch-A., Probabilistic Modeling of Micro- structure Formation In Solidification Processes., Acta Metall., Vol. 59, pp.945, 1966.

    11.Chao, L.S. and W. C. Du, Macro-Micro Modeling of Solidification, Pro. Natl. Sci. Counc. ROC(A), Vol. 23, NO. 5, pp. 622-629, 1999.

    12.W. Oldfield, Trans. Am. Soc. Met., Vol. 59, pp. 945, 1996.

    13.D. M. Stefanescu and S. Trufnesu ,Z. Metalkd., Vol. 65, pp.610, 1974.

    14.Fisher, J.C., referred to by B.Chalmers in Principles of Solidification, Wiley, New York, USA, pp.105, 1966.

    15.Ivantsov, G.P., Doklady Akademii Nauk SSSR, Vol 58, pp.567,1947.

    16.Glicksman, M.E., R.J. Schaefer, J.D. Ayers, Dendritic Growth---A Test of Theory, Metallurgical Transactions, Vol. 7A, pp.1747, 1976.

    17.Langer, J.S., and H. Müller-Krumbahaar, J. of Crystal Growth, Vol. 42, pp. 11, 1977.

    18.Mullins, W.W. and R.F. Sekerka, J. of Applied Physics, Vol. 35, pp. 444, 1974.

    19.Dantzig, J.A. and L.S. Chao, Low-Gravity Fluid Dynamics and Tranport Phenomenon, edited by J.N. Koster and R.L Sani, Progress in AIAA, Washington, DC, USA, Vol. 150, pp. 477-436, 1990.

    20.Han, Q. and J.D. Hunt, Numerical modeling of the growth of a cellular /dendritic array in multi-component alloys, Metall. and Materials Trans. A, Vol. 238(1), pp. 192-195, 1997.

    21.Brown SGR, Simulation of diffusional composite growth using the cellular automaton finite difference (CAFD), Journal of Materials Science, Vol. 33(19), pp. 4769-4776, 1998.

    22.Yu Ym M, Yang GC, Zhao DW, and Lu YL, Numerical simulation of dendritic growth in undercooled melt using phase-field approach, ACTA PHYSICA SINICA, Vol. 50(12), pp. 2423-2428, 2001.

    23.Bower, T.F., H.D. Brody, and M.C. Fleming, MET. Trans., Vol. 236, pp. 624, 1966.

    24.Y. Hasbani and M. Engelman, Out-Core Solution of Linear Equation with Non-symmertric Coefficient Matrix, Comput. and Flu. Vol.7, pp. 13-31, 1979.

    下載圖示 校內:立即公開
    校外:2004-08-30公開
    QR CODE