簡易檢索 / 詳目顯示

研究生: 嚴至賢
Yan, Jr-Shian
論文名稱: 應用邊界元素法評價發放股利之美式選擇權
Pricing American Call Option On Dividend-Paying Assets With Boundary Element Method
指導教授: 沈士育
Shen, Shih-yu
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 54
中文關鍵詞: 股利率邊界元素法美式選擇權
外文關鍵詞: dividend yield, American option, boundary element method
相關次數: 點閱:101下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   連續發放股利之美式買權之提早履約問題為一自由邊界(free boundary)問題,該問題之邊界須靠數值法求之。
      本研究利用邊界積分方程(Boundary Integral Equation)以邊界元素法(Boundary Element Method) 作為數值法,先解得最佳提前履約曲線,再求得此美式買權之合理價格,並以一例子去測試邊界元素法之可靠性,獲得不錯的結果。最後以股價、履約價格、股價波動率、無風險利率、股利率以及到期日等因素變化是否影響美式買權之價格相比較。

     The early exercise problem of American option on dividend-paying assets is a free boundary problem. The boundary of this problem must be obtained by numerical method.
     In my master thesis, a boundary element method is designed to evaluation American option on dividend-paying assets. Then we can obtain the optimum early exercise boundary, this can evaluate the price of American option on dividend-paying assets. An example with exact solution is used to test the numerical method. The result is highly accurate. One practical examples is evaluated with this method. The results are used to compare with the valuation of other methods, and sensitive analysis for parameters is presented.

    第一章 緒論------------------------------------------------1 第一節 選擇權介紹 -----------------------------------------1 第二節 股價指數選擇權介紹----------------------------------5 第三節 選擇權的評價模型------------------------------------9 第四節 研究目的和章節大綱---------------------------------13 第二章 數學模型-------------------------------------------14 第一節 Black-Scholes Model--------------------------------14 第二節 美式買權與邊界值問題-------------------------------17 第三節 均質方程式的轉換過程-------------------------------21 第四節 邊界積分表現式與邊界積分方程-----------------------23 第三章 邊界元素法解邊界值問題-----------------------------27 第一節 邊界元素法-----------------------------------------27 第二節 邊界元素法之可靠性---------------------------------35 第四章 數值例---------------------------------------------39 第一節 發放股利之美式買權最佳履約曲線---------------------39 第二節 影響選擇權價格的因素-------------------------------45 第五章 結論-----------------------------------------------51 參考文獻--------------------------------------------------52

    一、中文參考文獻:
    [1] 邱文昌, “國內外選擇權發展市場概述” ,證券暨期貨月刊,第二十二卷,第十期,頁4-10,2004
    [2] 陳威光, “選擇權 理論、實務與應用” ,智勝文化出版社,臺北市,2001
    [3] 陳松男, “基礎選擇權與期貨” ,新陸書局,臺北市,2003
    [4] 陳文彬、陳德鄉, “2005年IOMA/IOCA年會紀實” ,證券櫃檯,第107期,頁8-12,2005
    [5] 蔡明憲、廖四郎、徐守德、許溪南,“美式選擇權的定價-隱含相信模型及美國S&P100指數選擇權的應用”,中國財務學刊,第八卷 第一期,頁33-66,2000

    二、外文參考文獻:
    [1] Amin, K. I., ” On the computation of continuous time option prices using discrete approximations”, Journal of Financial and Quantitative Analysis, Vol.26, No.4, 477-495, 1991.
    [2] Black, F., and M. Scholes, ”Pricing of Options and Corporate Liabilities”, Journal of Political Economics,81,637-659, 1973.
    [3] Boyle, P., “Options: A Monte Carlo Approach ”, Journal of Financial Economics, 4, 323-338, 1977.
    [4] Brennan M J, Schwartz E S.,  “Finite difference methods and jump processes arising in the pricing of contingent claims:A synthesis[J]. ”
    ,Journal of Financial and Quantitative Analysis, 461-474, 1978.
    [5] Blomeyer, E. C.,  “An analytic approximation for the American put price for options on stocks with dividends ”, Journal of Financial and Quantitative Analysis, Vol.21, No.2, 229-233, 1986.
    [6] Barone-Adesi, G. and R. E. Whaley,  “ The valuation of American call options and the expected ex-dividend stock price decline”, Journal of Financial Economics 17, 91-111, 1986.
    [7] Barone-Adesi, G. and R. Whaley,  “Efficient Analytical Approximation of American Option Values” , Journal of Finance, 42, pp.301-320, 1987.
    [8] Brenner M., Courtadon, G and Subrahmanyam, M.,  “Options on Stocks and Options on Futures ”, Journal of Banking and Finance, 773-82, 1989.
    [9] Brenner M., "Stock Index Options",In Financial Options: From Theory to Practice, S. Figlewski, W. Silber and M. Subrahmanyam (editors), Business One Irwin, pp. 187-219, 1990.
    [10] Barraquand, J., and D. Martineau, “Numerical Valuation of High Dimensional Multivariate American Securities”,Journal of Financial and Quantitative Analysis, 30, 3, 383-405, 1995.
    [11] Broadie, M., and P. Glasserman, “Pricing American-Style Securities Using Simulation”, Journal of Economic Dynamics and Control, 21, 8-9, 1323-1352, 1997.
    [12] Cox, J.C., S. A. Ross, M. Rubinstein, “Option Pricing: A Simplified Approach”, Journal of Financial Economics 7, 229-264, 1979.
    [13] Geske, R., “A note on an analytical valuation formula for unprotected American call options on stocks with known dividends”, Journal of Financial Economics 7, 375-380, 1979.
    [14] Grant, D., G. Vora, and D. Weeks, “Simulation and the Early-Exercise Option Problem”, Journal of Financial Engineering, 5, 3, 211-227, 1996.
    [15] Hull, J., and A. White, “Efficient Procedure for Valuation European and American Path-Dependent Options ”, Journal of Derivatives, 1, 21-31, 1993.
    [16] Johnson, H. E, “ An analytic approximation for the American put price ”, Journal of Financial and Quantitative Analysis, Vol.18, No. 1, 141-148, 1983.
    [17] Kwok Y. K., 1998, Mathematical Models of Financial Derivatives, Springer Verlag.
    [18] Merton, R.C., “Theory of Rational Option Pricing”, Bell Journal of Economics and Management Science 4, 141-183, 1973.
    [19] Roll, R., “An analytic valuation formula for unprotected American call options on stocks with known dividends”, Journal of Financial Economics 5, 251-258, 1977.
    [20] Sevcovic D., “Analysis of the free boundary for the pricing of an American call option, Euro. Journal on Applied Mathematics, 12, 25-37, 2001.
    [21] Tilley, J. A., “Valuing American Options in a Path Simulation Model”, Transactions of the Society of Actuaries, 45, 83-104, 1993.

    下載圖示 校內:2007-07-12公開
    校外:2009-07-12公開
    QR CODE