簡易檢索 / 詳目顯示

研究生: 張宜溫
Chang, Yi-Wen
論文名稱: 重質油加氫脫氮製程的應用設計
The Application Design in Hydrodenitrogenation process of Residual Oil
指導教授: 江建利
Chiang, Chien-Li
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 95
中文關鍵詞: 觸媒重質油加氫脫氮模擬
外文關鍵詞: simulation, HDN, hydrodenitrogenation, residual oil, catalyst
相關次數: 點閱:35下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   由於含氮化合物為重質油中的第三主要成份的關係,所以隨著重質油加氫脫金屬和加氫脫硫製程的大量研究,有關加氫脫氮的製程及其脫氮效率的研究也越來越多。對於工業界之加氫脫金屬與加氫脫硫製程而言,通常是固定反應器出口的含金屬或含硫濃度,藉調高反應床溫度來彌補觸媒活性的降低。本研究即根據此一方式,嘗試建立重質油的加氫脫氮製程的模擬和探討其最佳化設計。本研究所採用之觸媒為單模式觸媒,並採一段式反應器設計。探討的系統參數包含:觸媒孔徑λ0、Φ(反應速率和擴散速率的比值,包括含金屬、含硫與含氮的分子的Φ)、含金屬進料濃度、含硫進料濃度、含氮進料濃度、重質油的滯留時間、出口含氮濃度限制等。系統的模擬包括在非恆溫操作下的升溫曲線、觸媒塞孔情形、達上限操作溫度時反應器各位置的濃度分佈等。另外,本研究將以使最終反應器的總脫氮量最大為條件,來探討觸媒的最佳孔徑。
      由模擬出的結果可知,ΦN越大,反應器壽命越短,總脫金屬量、總脫硫量、總脫氮量越少。重質油在反應器中的滯留時間越長,反應器壽命越長,總脫金屬量、總脫硫量、總脫氮量越多。出口含氮限制濃度越大,反應器壽命越長,總脫硫量越大、總脫金屬量微幅上升、總脫氮量則有微幅上升後下降的情形。在較常見的操作條件ΦM=3、ΦS=1、ΦN=1之下,達到最大脫氮量的觸媒孔徑值 約在0.055上下。

    The studies about the hydrodenitrogenation (HDN) process and its efficiency of the heavy residue oil have had considerable attention after a large number of the researches about the hydrodemetallization (HDM) and hydrodesulfurization (HDS) component of the oil. This is because that nitrogen-containing compounds are the tertiary component in the content of the residual oil. In the industrial applications about HDM and HDS, the outlet concentration of the metal-containing or sulfur-containing molecules is usually fixed by increasing the temperature of reactor to compensate for the deactivation of catalysts. According to this, the mathematical model will be established first, and then the effect of the system parameters upon the performance will be investigated. We use unimodal catalysts and one-stage reactor in this study. System parameters include the average diameter of the catalyst pore (λ0), Thiele Modulus Φ (the ratio of the reaction rate to the diffusion rate, include metal-containing, sulfur-containing, and nitrogen-containing molecule), the inlet metal concentration, the inlet sulfur concentration, the inlet and the outlet nitrogen concentration, the residence time of residual oil in the fixed bed reactor, and the distribution of metal, sulfur, and nitrogen concentration in the fixed bed reactor when the operating temperature reaches the upper limiting temperature. Besides, the optimal diameter of the catalyst pores is obtained by maximizing the denitrogenation amount of the reactor catalysts.
    The results of the simulation show that the amounts of demetallization, desulfurization, denitrogenation and the age of reactor decrease with the increasing value of ΦN. The slower the flow rate of the residual oil, the longer life of catalysts and more amounts of demetallization, desulfurization, and denitrogenation. Increasing the outlet limiting nitrogen concentration will prolong the age of the reactor, increase the amounts of desulfurization, lightly increase the amounts of demetallization, and increase the amounts of denitrogenation slightly first, then decrease. At the normal operating condition of ΦM=3, ΦS=1, and ΦN=1, the optional diameter of the catalyst pore that reaches the maximum amount of denitrogenation is about 0.055.

    目錄......................................................Ⅰ 圖目錄....................................................Ⅱ 符號說明..................................................Ⅸ 希臘符號說明............................................ⅩⅠ 第一章 緒論...............................................1 第二章 模式推導與計算方法.................................6 2.1 單一觸媒孔內的HDM、HDS 與HDN 反應......................6 2.2 觸媒顆粒的HDM、HDS 與HDN 反應速率......................9 2.3 固定床中HDM、HDS 與HDN 反應的模擬.....................10 2.4 非恆溫操作下的模擬....................................11 2.5 數值方法..............................................12 2.6 非恆溫操作下的最佳孔徑................................13 2.7 標準參數的設定........................................14 第三章 結果與討論........................................15 第四章 結論..............................................80 參考文獻..................................................82 附錄A 程式流程圖..........................................85 附錄B 系統模式參數........................................90 附錄C 總脫X 量計算........................................91 附錄D 三對角矩陣求u ......................................92 附錄E 觸媒孔洞模型........................................93 自述......................................................95

    1. Absi-Halabi, M.; Stanislaus, A.; Trimm, D. L., “Coke formation on catalysts during the hydroprocessing of heavy oil”, App. Catal., 1991, Vol. 72, p.193-215.
    2. Agrawai, R.; Wei, J., “Hydrodemetalation of nickel and vanadium-porphyrins. 1. Intinnsic Kinetics”, Ind. Eng. Chem. Des. Dev., 1984, Vol. 23, p.505-514.
    3. Ahn, B. J.; Smith, J. M., “Deactivation of hydrodesulfurization catalysts by metals deposition”, AIChE J., 1984, Vol. 30, No.5, p.739-746.
    4. Chang, C. D.; Silvestri, A. J., ”Manganese nodules as demetalation catalysts”, Ind. Eng. Chem. Process Des. Dev., 1974, Vol. 13, No. 3, p315-316.
    5. Charles N. Satterfield; Selahattin Gültekin, “Effect of hydrogen sulfide on the catalytic hydrodenitrogenation of quinoline”, Ind. Eng. Chem. Process Des. Dev., 1981, 20, 62-68.
    6. Diaz-Real, R. A.; Mann, R. S.; Sambi, I. S., Ind. Eng. Chem. Res., 1993, 32, 1354.
    7. Do, D. D., “Catalytic conversion of large molecules: effect of pore size and concentration”, AIChE J., 1984, Vol.30, No.5, p.849-853.
    8. Fleisch, T. H.; Meyers, B. L.; Hall, J. B.; Ott, G. L.; “Multitechnigue analysis of a deactivated resid demetallation catalyst”, J. of Catalysis, 1984, Vol. 86, p.147-157.
    9. Frye, C. G.; Mosby, J. F., “Kinetics of hydrodesulfurization”, Chem. Eng. Pro., 1967, Vol. 63, No. 9, p.66-70.
    10. Gail, E. and Wei, J., “Computer simulation of hydrodemetallation in fixed-bed reactors”, Chem. Eng. Comm., 1991, Vol. 105, p.129.
    11. Hastings, K. E.; James, L. C.; Mounce, W. R.; Cranbury, N. J., “Demetallization cuts desulfurization costs”, Oil and Gas J., June 30, 1975, p.122-130.
    12. Hung, C.; Howell, R. L.; Johnson, D. R.; “Hydrodemetallation catalysts”, CEP, March 1986, p.57-61.
    13. Jai-Who Kim; Francis V. Hanson, “Catalytic hydrotreatment of PR Spring bitumen over an HDM catalyst”, Energy, 1998, Vol. 23, No. 3, pp.221-229.
    14. Kwak, S.; Longstaff, D. C.; Deo, M. D.; Hanson, F. V., Fuel, 1994, 73, 1531.
    15. Limbach, K. W.; Wei, J., “Effect of nonuniform activity on hydrodemetallation catalyst”, AIChE J., 1988, Vol.34, No. 2, p.305-313.
    16. Mann, R. S.; Sambi, I. S.; Khulbe, K. C. Ind. Eng. Chem. Res., 1987, 26, 410.
    17. Michael J. Girgis; Bruce C. Gates, “Reactivities, reaction networks, and kinetics in high-pressure catalytic hydroprocessing”, Ind. Eng. Chem. Res., 1991, 30, 2021-2058.
    18. Mitsunorl Shimura; Yoshimi Shiroto; Chisato Takeuchi, “Effect of catalyst pore structure on hydrotreating of heavy oil”, Ind. Eng. Chem. Fundam., 1986, 25, p.330.
    19. Oleck, S. M.; Sherry, H. S., “Fresh water manganese nodules as a catalyst for demetalizing and desulfurizing petroleum residua”, Ind. Eng. Chem. Process Des.Dev., 1977, Vol. 16, No. 4, p.525-528.
    20. Oyekunle, L. O.; Hughes, R. “Metal deposition in residuum hydrodesulphurisation catalysis”, Chem. Eng. Res. Des., 1984, Vol. 62, p.339-343.
    21. Oyekunle, L. O.; Hughes, R., ”Catalyst deactivation during hydrodemetallization”, Ind. Eng. Chem. Fundam., 1987, Vol.26, No. 10, p.1945-1950.
    22. Pazos, J. M.; Ganzalez, J. C.; Salazar-Gaillen, A. J., “Effect of catalyst properties and operating conditions on hydroprocessing high metal feed”, Ind. Eng. Chem. Process Des. Develop., 1983, Vol. 22, p.653-659.
    23. Rafael A. Diaz-Real; Ranveer S. Mann; Inderjet S. Sambi, “Hydrotreatment of Athabasca bitumen derived gas oil over Ni-Mo, Ni-W, and Co-Mo Catalysts”, Ind. Eng. Chem. Res., 1993, 32, 1354-1358.
    24. Rajagopalan, K.; Luss, D., “Influence of catalyst pore size on demetallation rate”, Ind. Eng. Chem. Process. Des. Develop, 1979, Vol. 18, No. 3, p.459-465.
    25. Ruckenstein, E.; Tsai, M. C., “Optimum pore size for the catalyst conversion of large molecules”, AIChE J., 1981, Vol. 27, No. 4, p.697-699.
    26. Schuit, G. C. A.; Gates, B. C., “Chemistry and engineering of catalytic hydrodesulfurization”, AIChE J., 1973, Vol. 19, No. 3, p.417-436.
    27. Spry, J. C.; Sawyer, W. H., AIChE 68th Annual Meeting, Losangeles, Ca., Nov. 1975, p16-20.
    28. Tamm, P. W.; Harnsberger, H. F.; Bridge, A. G., “Effect of feed metal on catalyst aging in hydroprocessing residuum”, Ind. Eng. Chem. Process Des. Dev., 1981, Vol. 20, p.262-273.
    29. Van Zijll Langhout W. C.; Quwerkerk, O.; Prank, K. M. A.,”New process hydrotreats metal-rich feedstocks”, Oil and Gas J., Dec. 1, 1980, p.120-126.
    30. Ware, R. A.; Wei, J., “Catalystic hydrodemetallation of nickel porphyrins”, J. of Catal., 1985, 93, p.100-121.
    31. 施又嘉;江建利,“雙模式觸媒於重質油加氫脫硫製程的應用設計”,國立成功大學碩士論文,2002。
    32. 許仁韋;江建利,“蛋殼型觸媒於重質油加氫脫金屬固定床中的應用”,國立成功大學碩士論文,1999。
    33. 許東銘;江建利,“雙模式觸媒於重質油加氫脫金屬製程的應用設計”,國立成功大學碩士論文,2000。
    34. 許碩麟;江建利,“恆溫操作下重質油加氫脫硫反應床的最佳設計”,國立成功大學碩士論文,1993。
    35. 陳其聰;江建利,“同向式重質油加氫脫硫移動床反應器之最佳設計”,國立成功大學碩士論文,1997。
    36. 陳俊宏;江建利,“重質油加氫脫硫固定床反應器的最適設計”,國立成功大學碩士論文,1994。
    37. 黃德湧;劉丕憲,“重質油加氫脫硫製程電腦模擬研究”,中油公司煉研中心報告,1984。
    38. 葉春育;江建利,“重質油加氫脫硫觸媒的最佳孔徑與活性分佈”,國立成功大學碩士論文,1992。

    下載圖示 校內:立即公開
    校外:2003-06-27公開
    QR CODE