簡易檢索 / 詳目顯示

研究生: 簡仲麟
Jian, Zhong-Lin
論文名稱: 水泥廠之新型多聯產設計與經濟分析
Design and economic analysis of new polygeneration types of cement plant
指導教授: 吳煒
Wu, Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 114
中文關鍵詞: 水泥廠鈣迴路二氧化碳捕捉再利用多聯產Aspen Plus
外文關鍵詞: Cement plant, Calcium looping, CO2 capture and utilization system, Polygeneration, Aspen Plus
相關次數: 點閱:68下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球水泥在生產過程中,每年會有1.4 Gt二氧化碳排放量,約佔全球人為排放量的5.8%,二氧化碳對於全球暖化的影響極高,因此如何處理二氧化碳排放則成為水泥廠重要的課題。因此本研究之目的是將水泥廠結合鈣迴路與二氧化碳再利用系統,在減低二氧化碳排放的同時經濟效益也能有所提升。
      本研究透過Aspen Plus的流程模擬水泥廠、鈣迴路與二氧化碳再利用系統之製程,以文獻與台灣水泥公司的實際數據加以驗證,並透過靈敏度分析取得最適化的模擬結果。由於多聯產程序能夠透過分流器靈活調整其操作模式,取得最適合當下情境的架構,因此本研究也根據在台泥和平水泥廠的位置與台灣對於二氧化碳再利用之化學品的需求進行多聯產架構的設計。
      本研究以產出相同氫氣的情境下,提出三種不同的多聯產設計,並透過經濟分析比較出最佳的多聯產架構,最終得出架構三具有最佳的經濟效益,能夠有效減少1,824.8噸/月的二氧化碳排放並且產出1,790噸/月的尿素與354.1噸/月的甲醇,經過經濟分析後,在二十年的計畫年限,其淨現值為4,394.3M$,且預計6.1年可以回本,並有23%的內部報酬率,說明水泥廠的多聯產設計具有優異的經濟效益並且能減少大量的碳排放。

    The world’s cement plants generate 1.4Gt of CO2 emissions each year, accounting for about 5.8% of global anthropogenic emissions.CO2 has a very serious impact on global warming. Therefore, how to deal with CO2 emissions has become an important issue for cement plants.

    Therefore, the purpose of this research is to combine the cement plants, calcium looping and the carbon capture and utilization system(CCU), which can reduce CO2 emissions while improving economic benefits.In this study, we simulate the process of cement plant, calcium looping and CCU system by Aspen Plus, validating the simulation result by literature and actual data from Taiwan Cement Corporation (TCC)

    Three different polygeneration scenarios under the same H2 production in this research, and compare the best one through economic analysis. Finally, it is concluded that the scenario 1 has the best economic benefits and can effectively reduce 1,824.8 t/month CO2 emissions and production of 1,790 t/month of urea and 354.1 t/month of methanol. After economic analysis, scenario 1 has 23% IRR and the NPV is 4,394.3.5 M$, expected to pay back in 6.1 years.The polygeneration design of the cement plant has excellent economic benefits and can reduce a large amount of CO2 emissions.

    摘要 I 致謝 XIV 目錄 XVI 圖目錄 XX 表目錄 XXIII 第一章 緒論 1 1.1前言 1 1.2二氧化碳捕捉系統 2 1.3餘熱利用 3 1.4研究動機與目標 5 第二章 水泥製程與鈣迴路 6 2.1水泥製程介紹 6 2.2水泥製程模擬 8 2.2.1煤礦燃燒流程 9 2.2.2旋窯與熟料冷卻器 10 2.2.3懸浮預熱器與預煅燒爐 11 2.2.4模擬驗證與結果 13 2.3二氧化碳捕捉系統 16 2.4鈣迴路介紹 18 2.5鈣迴路模擬 19 2.5.1碳酸化爐 19 2.5.2煅燒爐 20 2.5.3固氣分離設備 20 第三章 二氧化碳再利用之多聯產系統 22 3.1二氧化碳再利用(CCU) 22 3.2多聯產(Polygeneration) 23 3.2.1多聯產架構一 24 3.2.2多聯產架構二 26 3.2.3多聯產架構三 28 3.3多聯產系統模擬 30 3.3.1發電系統 30 3.3.1.1廢熱回收發電系統 31 3.3.1.2光伏發電系統 33 3.3.2產氫系統 35 3.3.2.1水電解(Electrolysis of Water) 36 3.3.2.2熱化學循環(Thermochemical Cycle) 40 3.3.2.3產氫系統比較 48 3.3.3產氨系統 49 3.3.4產尿素系統 52 3.3.5產甲醇系統 56 第四章 經濟分析 59 4.1市場需求 59 4.2多聯產系統評估 60 4.2.1淨現值(Net present value, NPV): 60 4.2.2內部報酬率(Internal rate of return, IRR): 61 4.2.3投資回收期(Payback period ,PBP): 61 4.2.4二氧化碳避免成本(CO2 Avoided Costs) 61 4.2.5碳稅(Carbon tax) 62 4.3經濟分析 63 4.3.1水泥廠 63 4.3.1.1 設備成本 63 4.3.1.2 操作成本 64 4.3.2鈣迴路 67 4.3.2.1 設備成本 67 4.3.2.2 操作成本 68 4.3.3二氧化碳再利用系統 69 4.3.3.1 設備成本 70 4.3.3.2 操作成本 73 4.3.4多聯產系統成本比較 74 4.3.5經濟指標評估 78 第五章 結論 81 參考文獻 83

    [1] F.A.Rodrigues, I. Joekes, Cement industry: sustainability, challenges and perspectives. Environ Chem Lett 151–166, 2011.
    [2] N. Pardo J. A. Moya, A. Mercier, Prospective on the energy efficiency and CO2 emissions in the EU cement industry, Energy 36 3244-3254, 2011.
    [3] T. Hills,D. Leeson , N. Florin , P. Fennell, Carbon capture in the cement industry:
    technologies, progress, and retrofitting. Environ Sci Technol 50, 368–377,2016.
    [4] K.Vatopoulos, E. Tzimas, Assessment of CO2 capture technologies in cement manufacturing process. J Cleaner Prod 32, 251–61, 2012.
    [5] M. Naranjo, D.T. Brownlow, A. Garza, CO2 capture and sequestration in thencement industry. Energy Procedia 4, 2716-2723, 2011.
    [6] A.Bosoaga, O. Masek, J.E. Oakey, CO2 capture technologies for cement industry.Energy Proc 1, 133–140, 2009.
    [7] M. C. Romano, M. Spinelli, S. Campanari, S. Consonni, M. Marchi, N. Pimpinelli, G. Cinti, The Calcium Looping Process for Low CO2 Emission Cement Plants, Energy Procedia 61 500 – 503, 2014.
    [8] C.C. Dean, J. Blamey, N.H. Florin, M.J. Al-Jeboori, Fennell., The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production. Chemical Engineering Research and Design 89, 836–855, 2011.
    [9] K. Atsonios, P. Grammelis, S.K. Antiohos, N. Nikolopoulos, Em. Kakaras, Integration of calcium looping technology in existing cement plant for CO2 capture: Process modeling and technical considerations. Fuel 153, 210–223, 2015.
    [10] L.M. Romeo, D. Catalina, P. Lisbonam, Y. Lara, A. Martínez , Reduction of greenhouse gas emissions by integration of cement plants, power plants, and CO2 capture systems. Greenhouse Gases: Sci Technol 1, 72–82, 2011.
    [11] M. A. Aldieb, and Hesham G. Ibrahim, Member, IAENG, Variation of Feed Chemical Composition and Its Effect on Clinker Formation–Simulation. Process Proceedings of the WCECS Vol II, 2011.
    [12] A.basile, A.Gugliuzza and A. iulianelli, Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications, England:Woodhead Publishing, 2011.
    [13] A. Charitos, C. Hawthorne, A. Bidwe, L. Korovesis, A. Schuster, and G. Scheffknecht, Hydrodynamic analysis of a 10kW th Calcium Looping Dual Fluidized Bed for post-combustion CO2 capture, Powder Technology, vol. 200, 117-127, 2010.
    [14] A. Telesca, D. Calabrese, M. Marroccoli, M. Tomasulo, G.L. Valenti, G. Duelli, F. Montagnaro, Spent limestone sorbent from calcium looping cycle as a raw material for the cement industry. Fuel 118, 202-205, 2014.
    [15] J. Farfan, M. Fasihi, Trends in the global cement industry and opportunities for long-term sustainable CCU potential for Power-to-X. Journal of Cleaner Production 217, 821-835, 2019.
    [16] K. Jana, A.Ray, M. M. Majoumerd, M. Assadi, Polygeneration as a future sustainable energy solution – A comprehensive review. Applied Energy 202, 88–111, 2017.
    [17] C. Fu, G. Truls, Using exergy analysis to reduce power consumption in air separation units for oxy-combustion processes. Energy 44, 60-68, 2012.
    [18] R.Bhandari, C. Trundewind, P. Zapp, Life cycle assessment of hydrogen production via electrolysis - a review, J. Cleaner Prod. 85, 151–163, 2014.
    [19] C. Casarosa, F. Donatini, and A. Franco, Thermoeconomic optimization of heat recovery steam generators operating parameters for combined plants. Energy, 29, 389-414, 2004.
    [20] T. k. Ibrahim et al., The optimum performance of the combined cycle power plant: A comprehensive review,” Renewable and Sustainable Energy Reviews, 79, 459-474, 2017.
    [21] NREL Annual Technology Baseline. Golden, CO: National Renewable Energy Laboratory, 2019.
    [22] NREL.PV Watts Calculator. Golden, CO: National Renewable Energy Laboratory, 2020.
    [23] M.R.Gomaa, W. Hammad, M. Al-Dhaifallah, H. Rezk, Performance enhancement of grid-tied PV system through proposed design cooling techniques: An experimental study and comparative analysis, Solar Energy 1110-1127, 2020.
    [24] N.H. Reich, et al., Performance ratio revisited: is PR > 90% realistic?. Progress in Photovoltaics: Research and Applications, Photovoltaics Research and Applications 20(6):717-726, 2012.
    [25] B. Decker and U. Jahn., Performance of 170 grid connected PV plants in Northern Germany’ Analysis of yields and optimization potentials.” Solar Energy, 59 (4-6), 127–133, 1997.
    [26] S.J. Ransome, J.H. Wohlgemuth, S. Poropat, and R. Morgan, Can Grid Tied PV Systems Be Characterised with Only Monthly Average Values of PR?. Proc. 19th PVSEC; Paris, France; pp. 51-56, 2004.
    [27] B. Marion, et al., Performance Parameters for Grid-Connected PV Systems. Proc. 31st Photovoltaic Specialists Conference Lake Buena Vista, FL,2005.
    [28] F.Calise M. Dentice D’Accadia, M. Santarelli A. Lanzini, D.Ferrero, 2019, Solar Hydrogen Production, Processes, Systems and Technologies, 2019.
    [29] A. Beainy, N. Karami, N. Moubayed, Simulink Model for a PEM Electrolyzer Based on an Equivalent Electrical Circuit, REDEC 2014 - November 26-27, 2014.
    [30] S. Abanades, P. Charvin, G. Flammant, P. Nevenu, Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy 31 2805-2822, 2006.
    [31] M. Serban, M.A. Lewis, J. K. Basco, “Kinetic Study of the Hydrogen and Oxygen Production Reactions in the Copper–Chloride Thermochemical Cycle.” AIChE Spring National Meeting,p. 25–29, 2004.
    [32] M.A.Lewis, R&D status for the Cu-Cl thermochemical cycle. Argonne National Laboratory, 2009.
    [33] Z. Wang, R.R. Roberts, G.F. Naterer, K.S. Gabriel, Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies, International Journal of Hydrogen Energy Volume 37 16287-16301, 2012.
    [34] J. Qian, Q. An, Alessandro Fortunelli, Robert J. Nielsen, and William A. Goddard, Reaction Mechanism and Kinetics for Ammonia Synthesis on the Fe(111) Surface. Journal of the American Chemical Society 140 (20), 6288-6297, 2018.
    [35] M. Iwamoto, M. Horikoshi, R. Hashimoto, K. Shimano, T. Sawaguchi, H. Teduka, M. Matsukata, 2020, Higher Activity of Ni/γ-Al2O3 over Fe/γ-Al2O3 and Ru/γ-Al2O3 for Catalytic Ammonia Synthesis in Nonthermal Atmospheric-Pressure Plasma of N2 and H2, Catalysts 2073-4344.
    [36] H. Uchida, M. Kuraishi, Reaction Rates in the Synthesis of Ammonia. I. Dependence upon Reaction Pressure and Hydrogen-Nitrogen Ratio. Bulletin of the Chemical Society of Japan, Vol. 28, No. 2., 1954.
    [37] M. Dente, M. Rovaglio, G. Bozzano, A. Sogaro, Gas–liquidreactor in the synthesis of urea. Chemical Engineering Science 47 2475, 1992.
    [38] X.P. Zhang, S.J. Zhang, P. J. Yao, Y. Yuan, Modeling and simulation of high-pressure urea synthesis loop. Computers and Chemical Engineering 29 983–992, 2005.
    [39] R.M. Smith, R.M., Chemical process: design and integration, John Wiley & Sons., 2005.
    [40] M. Aresta, Carbon Dioxide as Chemical Feedstock, 1 edition, Wiley-VCH,2010.
    [41] C. Mardones, C. García, Effectiveness of CO2taxes on thermoelectric power plants and industrial plants, Energy 206 118157, 2020
    [42] D. E. Garrett, , Chemical Engineering Economics, Springer, Dordrecht, 1989.
    [43] D.J. Barker, S.A. Turner, P.A. Napier-Moore, M. Clark, J.E. Davison, CO2 Capture in the Cement Industry, Energy Procedia 87-94, 2009.
    [44] R.Turton, R.C. Bailie, W.B. Whiting, J.A. Shaeiwitz. Analysis, synthesis, and design of chemical processes. 3rd ed. USA: Pearson Educa, 2009.
    [45] M. C. Romano, M. Spinelli, S. Campanari, S. Consonni, G. Cinti, M. Marchi, E. Borgarello, The Calcium looping process for low CO2 emission cement and power ,Energy Procedia 37 7091-7099, 2013.
    [46] C. C. Cormos, Economic implications of pre- and post-combustion calcium looping configurations applied to gasification power plants, International Journal of Hydrogen Energy 39 10507-10516, 2014.
    [47] D.C. Martins, E. Bazzo, R. Ruther, Technical and Economic Analysis of a PV/Diesel Hybrid System Applied to Rural Electrification for Isolated Communities in the Northern Brazilian Region, 2005 IEEE 36th Power Electronics Specialists Conference, 2005.
    [48] Y. Han, G. Xu, Q. Zheng, et al. New heat integration system with bypass flue
    based on the rational utilization of low-grade extraction steam in a coal-fired
    power plant. Appl Therm Eng 113:460, 2017.
    [49] E. Esmaili, E. Mostafavi, and N. Mahinpey, Economic assessment of integrated coal gasification combined cycle with sorbent CO2 capture. Applied Energy, vol. 169, pp. 341-352, 2016.
    [50] M.F.Orhan, I.Dincer, M.A.Rosen, Design of systems for hydrogen production based on the Cu-Cl thermochemical water decomposition cycle: Configurations and performance, International Journal of Hydrogen Energy. 11309-11320, 2011.

    下載圖示 校內:2023-08-13公開
    校外:2023-08-13公開
    QR CODE