簡易檢索 / 詳目顯示

研究生: 羅嘉和
Luo, Jia-Huo
論文名稱: 玻璃基板上成長不同結構金屬氧化物低溫多晶矽薄膜蕭特基二極體式一氧化碳感測器之研究
The Development of Low Temperature Poly Silicon (LTPS) Thin Film Schottky Diode Type CO Gas Sensors with Various Structures Metal Oxide on Glass Substrate
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 141
中文關鍵詞: 低溫多晶矽感測器奈米結構
外文關鍵詞: LTPS, sensor, nanostructures
相關次數: 點閱:103下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討利用玻璃基板上準分子雷射退火(Excimer Laser Annealing)成長的低溫多晶矽薄膜(LTPS) 製作不同結構ZnO,SnO2及WO3 為 感 測 元件的MIS蕭特基二極體式一氧化碳感測器。吾人利用水熱法(hydrothermal method)製備ZnO奈米柱、SnO2奈米多孔薄膜、SnO2奈米微粒子以及SnO2奈米花並研究不同奈米結構對一氧化碳感測器之影響。
    研究分為三個部分,(1)不同感測材料ZnO、SnO2、以及WO3之比較(2)採用不同厚度種晶層成長ZnO奈米柱並與ZnO薄膜相互比較(3)利用不同時間對種晶層退火成長SnO2不同表面形態之奈米結構並與SnO2薄膜相互比較。
    實驗結果顯示,在200℃,逆偏壓3V及3000ppm的CO +air的環境下WO3薄膜對一氧化碳氣體的感測能力約為320%;SnO2薄膜為220%; ZnO薄膜為66%。但如成長為奈米結構則ZnO奈米柱為615%;SnO2奈米花(nano flower)有最佳之感測能力靈敏度約3520%。而對小濃度(100ppm)的一氧化碳感測以WO3薄膜的72%與SnO2奈米花的128%為最佳。相較已發表於文獻在270℃/100ppm 條件下Au/SnO2 電阻式的8%及Au/ZnO/(n-type Si)i電子式的37%感測器為佳。
    另外,吾人也探討不同結構感測層對反應時間的影響。在逆偏壓3V,200℃及100ppm的CO +air的環境下的反應時間,其中以SnO2奈米花有最快的反應時間12sec;其次WO3薄膜為16sec;最後則是ZnO奈米柱的22sec。這些也都比Au/SnO2電阻式的470sec及Au/ZnO/(n-type Si)電子式的173sec來的快。

    In this thesis, we use the excimer laser annealing(ELA) prepared  low temperature poly-silicon thin film(LTPS) with various structure metal oxide (MOx) on glass substrate to fabricate the MOS Schottky diode-type CO gas sensor. The various structure MOx are ZnO nanorods, SnO2 nano porous, SnO2 nano particle and SnO2 nano flower using hydrothermal method.
    We report the comparisons in sensing characteristics for (a) different sensing material ZnO, SnO2, and WO3, (b) the grown ZnO nanorods with different seed layer thickness, and (c) the grown SnO2 nanostructure with different annealing time.
    Experimental results showed the Schottky diode with ZnO nanorods and SnO2 nano flower can achieve sensitivity up to 615% and 3520% under 200℃ ,3V reverse bias, and 3000ppm CO /air ambient, respectively. For detecting a small concentration CO gas, WO3 thin film and SnO2 nano flower have the best sensing abilities of 72% and 128%, respectively. These sensitivities are better than the reported 8% and xxx 37% under 270℃/100 ppm for the Au/SnO2 resistance and Au/ZnO/(n-type Si) electronic type sensors, respectively.
    Furthermore, we also discussed the influences of sensing layers with different structures on the response time. Under the conditions of reverse bias 3V, 200℃ and 100ppm of CO / air environment, the response time of the sensors with SnO2 nano flower, WO3 thin film and ZnO nanorods are 12sec, 16sec, and 22sec, respectively. Obviously, the SnO2 nano flower has the best response time, and fast than 470sec and 173sec of the reported Au/SnO2 resistance and Au/ZnO/(n-type Si) electronic type sensors, respectively.

    中文摘要 I 英文摘要 III 目錄 VII 圖表目錄 IX 1-1 前言 1 1-2 氣體感測器 2 1-3 一氧化碳特性 3 1-4 低溫多晶矽成長技術的簡介 4 1-4-1 固相結晶法 5 1-4-2 金屬誘發結晶與金屬誘發橫向結晶 5 1-4-3 準分子雷射退火 6 1-5 奈米結構的簡介 7 1-6 論文架構 8 第二章、元件原理與金屬氧化物奈米結構成長機制 9 2-1 元件基礎理論 9 2-2 感測器工作原理 11 2-2-1 氧氣的吸附 12 2-2-2 氧空格(Oxygen Vacancy) 14 2-3水熱法(hydrothermal method) 15 2-3-1水熱法的原理 15 2-3-2水熱法的優點 15 2-3-3水熱法的應用 15 2-4氧化鋅奈米柱的晶體結構與成長機制 17 2-4-1氧化鋅之晶體結構 17 2-4-2氧化鋅奈米柱成長機制 17 2-5二氧化錫奈米結構的晶體結構與成長機制 19 2-5-1二氧化錫之晶體結構 19 2-5-2水熱法成長二氧化錫奈米結構之機制 19 第三章、蕭特基二極體式一氧化碳感測元件之成長系統與量測儀器 21 3-1 成長系統 21 3-1-1電漿助長化學氣相沉積系統(PECVD System) 21 3-1-2射頻磁控濺鍍系統(Radio-Frequency Sputtering System) 23 3-1-3真空熱蒸著系統(Thermal Vacuum Evaporation System) 25 3-1-4退火系統(Annealing System) 26 3-2 量測儀器 26 3-2-1掃描式電子顯微鏡 (FE-SEM) 26 3-2-2 原子力顯微鏡(Atomic Force Microscope, AFM) 27 3-2-3 α-step 膜厚量測儀 27 3-2-4 X光繞射儀(X-ray Diffractometer, XRD) 27 3-2-5 氣體感測量測系統 28 3-2-6 HP4145B半導體參數分析儀 28 第四章、各種金屬氧化物奈米結構的製備及元件製作 29 4-1氧化鋅奈米柱 29 4-1-1 氧化鋅奈米柱的製備流程 29 4-1-2 利用不同種晶層成長氧化鋅奈米柱 30 4-2成長二氧化錫奈米結構 31 4-2-1奈米結構的製備流程 31 4-2-2利用不同退火時間成長奈米結構 31 4-3元件之製作程序 33 4-4 量測實驗 34 第五章、結果與討論 36 5-1不同氧化層對元件之影響 36 5-1-1 Au/ZnO/(n-type-Si)結構 37 5-1-2 Au/SnO2/(n-type-Si)結構 38 5-1-3 Au/WO3/(n-type-Si)結構 40 5-1-4不同氧化層之綜合討論 41 5-2氧化鋅奈米柱對元件之影響 45 5-2-1 Au/ZnO nanorod(seed layer 50nm) /(n-type-Si)結構 45 5-2-2 Au/ZnO nanorod(seed layer 25nm) /(n-type-Si)結構 46 5-2-3氧化鋅奈米柱之綜合討論 48 5-3 二氧化錫奈米結構對元件之影響 51 5-3-1 Au/SnO2 nano porous/(n-type-Si)結構 51 5-3-2 Au/SnO2 nano particle/(n-type-Si)結構 52 5-3-3 Au/SnO2 nano flower/(n-type-Si)結構 54 5-3-4 二氧化錫奈米結構之綜合討論 56 第六章 結論與展望 59 6-1結論 59 6-2未來展望 61 *參考文獻 62

    [1]蔡嬪嬪,曾明漢,“氣體感測器之簡介、應用及市場”,材料與社會,第68期(1992)50.

    [2]蔡嬪嬪,曾明漢,“氣體感測器之簡介、應用及市場”,材料與社會,第150期六月(1999)92.

    [3]蔡嬪嬪,“氣體感測器市場發展近況”,工業材料, 88 期4月(1994)101.

    [4]Albert L. Love, “Carbon Monoxide in the Home Environment”, University Microfilms International, Michigan 1986.

    [5] K. Wark, C. F. Warner and W. T. Davis, “Air pollution: its origin and control”, Addison-Wesley Pub. Co., Massachusetts 1998.

    [6]“一氧化碳影響人體之嚴重性”,美國國家消防協會NFPA編著之防火手冊2003

    [7] “勞工作業環境空氣中有害物容許濃度標準”,行政院勞工委員會 2003.

    [8] G. Fortunato, L. Mariucci, R. Carluccio, A. Pecora and V. Foglietti, “Excimer Laser Crystallization Techniques for Polysilicon TFTs” Applied Surface Science, Vol. 154-155, pp.95-104, 2000.

    [9] 范盛宏,“金誘發非晶矽薄膜橫向結晶層之研製及特性分析”國立成功大學電機工程學系碩士論文,1999。

    [10]H. Kuriyama, and T. Kuwahara, “Improving the Uniformity of Poly-Si Films Using a New Excimer Laser Annealing Method for Giant-microelectronics” , Jpn. J. Appl. Phys, Vol. 31, p. 4550, 1992.

    [11] K. Sera, F. Okumura, H. Uchida, S. Itoh, S. Kaneko, and K. Hotta,
    “High-Performance TFT’s Fabricated by XeCl Excimer Laser Annealing of Hydrogenated Amorphous-silicon Film”, IEEE Transactions on Electron Devices,Vol.36,p.2868,1989.

    [12]S. J. Moon, M. Lee, and C. P. Grigoropoulos, “Heat Transfer and Phase Transformations in Laser Annealing of Thin Si Films” Journal of Heat Transfer, Vol. 124, p.253, 2002.

    [13] A. Hadjadj, L. Boufendi, S. Huet, S. Schelz, P. R. Cabarrocas, H. E.
    Szwarckopf, and B. Rousseau, “Role of the Surface Roughness in
    Laser Induced Crystallization of Nanostructured Silicon Films”
    J. Vac. Sci. Technol. A, Vol. 18, p.529, 2000.

    [14] J. S. Im, M. A. Crowder, R. S. Sposili, J. P. Leonard, H. J. Kim,
    J. H. Yoon, V. V. Gupta, H. Jin Song, and H. S. Cho, “Controlled Super-Lateral Growth of Si Films for Microstructural Manipulation
    and Optimization” phys. stat. sol.(a), Vol. 166, p.603, 1998.
    [15] “奈米科技及應用之產業分析與投資機會”,經濟部投資業務2008

    [16]陳貴賢,吳季珍,“一維奈米材料的研究”,物理雙月刊 23(6) 2001

    [17] V. L. Rideout, “A Review of the Theory, Technology and Applications of Metal-Semiconductor Rectifiers,” Thin Solid Film,
    48,261.1978

    [18]S. M. Sze, “Physics of semiconductor devices”ch5, wiley, New York,
    1980.

    [19]Neamen, “Semiconductor physics and device”ch9, p336,
    McGraw-Hill, 1992.

    [20] H.Windischmann and P.Mark,” A model for the operation of a thin
    film SnOx conductance-modulation carbon monoxide sensor”,
    Journal of the electrochemical society Vol.126,No.4,pp.627-633
    (1979)

    [21] S. R. Morrison, “The Chemical Physics of Surfaces,2nd” , New York:
    Plenum Press, pp. 251 (1990).
    [22] N. Yamazoe, J. Fuchigami, M. Kishikawa and T.Seiyama,
    “Interactions of tin oxide surface with O2, H2O and H2”, Surface
    Science, Vol. 86, pp. 335-344 (1979).

    [23] K. M. Sancier, “ESR evidence of CO oxidation by more than one
    oxygen species sorbed on ZnO”, Journal of Catalysis, Vol. 9,
    pp.331-335 (1967)

    [24] S. C. Chang, “Thin-film semiconductor NOx sensor”, IEEE
    Transactions on Electron Devices, Vol. ED-26, No. 12, pp.1875-1880(December 1979).

    [25] P. Georgiou, K.Kolokotronis , j. Simitzis“Synthesis of ZnO Nanostructures by Hydrothermal Method”, Journal of Nano Research Vol. 6 (2009) pp 157-168

    [26] D. Wang, X. Q. Meng, Z. Q. Chen, “Effect of electric field and postgrowth annealing on the morphology and crystallinity of hydrothermally grown ZnO nanostructures”,Physica E, 2008, 40: 852-858.

    [27]劉芳佐,劉進興,“Gas sensing properties of ZnO nanorod prepared hydrothermal method”國立台灣科技大學化學工程學系碩士論文,民98年7月

    [28] Q. Ahsanulhaq, A.Umar and Y.B.Hahn“Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties”, Nanotechnology 18 (2007) 115603 (7pp)

    [29]許慶雄,黃炳淮,“Characterization of the SnO2 thin film derived from an ultrasonic atomization process”國立中山大學材料科學研究所,民國90年7月

    [30] L. Vayssieres and M.Graetzel“ Highly Ordered SnO2 Nanorod Arrays from Controlled Aqueous Growth” Angew. Chem. Int. Ed. 2004, 43, 3666–3670

    [31] O. Lupan , L.Chowa, G.Chai, H.Heinrich ,S.Park , A.Schulte“Synthesisofone-dimensionalSnO2 nanorods viaahydrothermaltechnique ” Physica E 41 (2009) 533–536

    [32] J.G Kim, S.H Nam, S.H Lee, S. M Choi, and W B Kim, “SnO2 Nanorod-Planted Graphite: An Effective Nanostructure
    Configuration for Reversible Lithium Ion Storage” ACS Appl. Mater. Interfaces 2011, 3, 828–835

    [33] Pere ROCA i CABARROCAS, Anna FONTCUBERTA I MORRAL, Billel KALACHE, and Samir KASOUIT, “Microcrystalline Silicon
    Thin Films Grown by PECVD. Growth Mechanisms and Grain Size
    Control,” Solid State Phenomena, Vol. 93, pp. 257-268, 2003

    [34] I. W. Wu, T. Y. Huang, W. B. Jackson, A. G. Lewis, and A. Chiang,
    “Passivation Kinetics of Two Types of Defects in Polysilicon TFT by
    Plasma Hydrogenation,” IEEE Electron Dev. Lett.,EDL-12,181 ,1991

    [35] X. L. Jiang, Y. L. He, H. L. Zhu, “The effect of passivation of boron
    dopants by hydrogen in nano-crystalline and micro-crystalline silicon
    films” J. Phys.: Condens. Matter 6,pp. 713-718, 1994.

    [36]Y.Tao,M.Fu, A.Zhao, D.He, Y.Wang“The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method” Journal of Alloys and Compounds 489 (2010) 99–102

    [37] W Hellmich, G Muller, ChB Braunmuhl, T Doll, I Eisele. “Field-effectinduced gas sensitivity changes in metal oxides.” Sensors Actuators B 1997;43:132–9.

    [38] A Galdikas, S Kaˇciulis, G Mattogno, A Mironas, D Senuliene, A Šetkus. “Stability and oxidation of the sandwich type gas sensors based on thin metal films.” Sensors Actuators B 1998;48:376–82.

    [39] M.I. Baraton, L. Merhari, H. Ferkel , J.F.Castagnet “ Comparison of the gas sensing properties of tin, indium and tungsten oxides nanopowders: carbon monoxide and oxygen detection” Materials Science and Engineering C 19 Ž2002. 315–321

    [40]H.O.Zhu,J.R.Kim,S.K.Ihm“Characteristics of Pt/WO3/CeO2/ZrO2 Catalysts for catalytic reduction of NO by CO” , Applied Catalysis B-Environmental ,vol 86, 2009 , pp.87-92

    [41]C.W.Lin,Y.K.Fang,C.H.Luo“Characterization and Preparation of Low Temperature Poly-silicon(LTPS) Thin Film Schottky Diode-Type Carbon Monoxide Sensors.”Department of Electrical Engineering National Cheng Kung University , 2008.7.

    [42] F.T.Liu, S.F.Gao, S.K Pei, S.C.Tseng, C.H.J. Liu, “ZnO nanorod gas sensor for NO2 detection.” Journal of the Taiwan Institute of Chemical Engineers 40 (2009) 528–532

    [43]C.Y Lee , C.C.Chang, Y.M.Lo “Fabrication of a Flexible Micro CO Sensor for Micro Reformer Applications”, SENSORS ,vol.10,2010,pp. 10701-10713

    [44] F.R.Juang, Y.K.Fang, Y.T.Chiang, T.H.Chou, C.I.Lin, C.W.Lin and Y.W.Liou“Comparative Study of Carbon Monoxide Gas Sensing Mechanism for the LTPS MOS Schottky Diodes with Various Metal Oxides”, IEEE SENSORS JOURNAL, VOL. 11, NO. 5, MAY 2011

    [45] Z. Jin, H.J.Zhou, Z.L.Jin, R. F. Savinell, C.C.Liu“Application of nano-crystalline porous tin oxide thin film for CO
    sensing”, Sensors and Actuators B 52 (1998) 188–194

    [46] C.Y.Lee, C.C.Chang and Y.M.Lo“Fabrication of a Flexible Micro CO Sensor for Micro Reformer Applications”, Sensors 2010,10, 10701-10713

    [47] M. Q. Israr, J. R. Sadaf,L. L. Yang, O. Nur,M. Willander, J. Palisaitis, and P. O. Å. Persson“ Trimming of aqueous chemically grown ZnO nanorods into ZnO nanotubes and their comparative optical properties ”, APPLIED PHYSICS LETTERS 95, 073114
    (2009)

    無法下載圖示 校內:2016-07-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE