| 研究生: |
郭政鑫 Kuo, Cheng-Hsin |
|---|---|
| 論文名稱: |
虛位移原理有限圓柱層殼元素法在功能性材料三明治圓柱殼分析之歸一理論 A unified formulation of PVD-based finite cylindrical layer methods for functionally graded material sandwich cylinders |
| 指導教授: |
吳致平
Wu, Chih-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 有限層殼元素 、虛位移理論 、撓曲 、振動 、功能性梯度材料 、圓柱 |
| 外文關鍵詞: | Finite layer methods, The principle of virtual displacements, Bending, Vibration, Functionally graded material, Cylinders |
| 相關次數: | 點閱:102 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文使用基於虛位移原理(the principle of virtual displacements, PVDs)之有限圓柱層殼元素法分析一兩端為簡支承之功能性材料三明治中空圓柱殼的擬三維靜態撓曲及自然振動行為,其材料性質假設功能性材料的材料參數是以體積比沿著厚度方向呈現冪級數形式變化。本文理論公式中,圓柱將被切割成數個有限層殼元素,其中每層的曲面位移和橫向位移分別以三角函數和拉格朗治多項式進行內插模擬。由於本文是以h-refinement程序對有限層殼元素法所得之數值解進行收斂性探討,所以對於位移分量展開的相對階數將保持為變數,且可以自由選擇線性、二次或是三次元素理論進行分析運算。本文中,基於PVD之有限圓柱層殼元素法的收斂速度及準確率也將與現有文獻中的三維解進行比較。
A unified formulation of finite cylindrical layer methods (FCLMs) based on the principle of virtual displacements (PVDs) is developed for the (3D) bending and free vibration analyses of simply-supported, functionally graded material (FGM) sandwich circular hollow cylinders, in which the material properties of the FGM layer are assumed to obey the power-law distributions of the volume fractions of the constituents through the thickness coordinate. In this formulation, the cylinder is divided into a number of cylindrical finite layers, where the trigonometric functions and Lagrange polynomials are used to interpolate the in- and out-of-surface variations of the displacement components of each individual layer, respectively. Because an h-refinement is adopted in this article to yield the convergent solutions, the relative orders used for expansion of the displacement components remain variable, and can be freely chosen as linear, quadratic and cubic ones. The accuracy and convergence rate of a variety of PVD-based FCLMs developed in this article are assessed by comparing their solutions with the available 3D ones.
A.K. Noor, W.S. Burton, Assessment of computational models for multilayered anisotropic plates, Compos. Struct. 14 (1990) 233_265.
A.K. Noor, W.S. Burton, C.W. Bert, Computational model for sandwich panels and shells, Appl. Mech. Rev. 49 (1996) 155_199.
A.K. Noor, W.S. Burton, Assessment of computational models for multilayered composite shells, Appl. Mech. Rev. 43 (1990) 67_97.
A.K. Noor, W.S. Burton, J.M. Peters, Assessment of computational models for multilayered composite cylinders, Int. J. Solids Struct. 27 (1991) 1269_1286.
E. Carrera, An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates, Compos. Struct. 50 (2000) 183_198.
E. Carrera, Historical review of zig-zag theories for multilayered plates and shells, Appl. Mech. Rev. 56 (2003) 287_308.
E. Carrera, Developments, ideas, and evaluations based upon Reissner’s mixed variational theorem in the modeling of multilayered plates and shells, Appl. Mech. Rev. 54 (2001) 301_329.
E. Carrera, A. Ciuffreda, Bending of composites and sandwich plates subjected to localized lateral loadings: A comparison of various theories, Compos. Struct. 68 (2005) 185_202.
C.P. Wu, K.H. Chiu, Y.M. Wang, A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells, CMC_Comput. Mater. Continua 18 (2008) 93_132.
H.G. Allen, Analysis and Design of Structural Sandwich Panels, Pergamon, Oxford, 1969.
D. Zenkert, An Introduction to Sandwich Structures, Chamelon, Oxford, 1995.
J.R. Vinson, The Behavior of Sandwich Structures of Isotropic and Composite Materials, Technomic, Lancaster, PA, 1999.
M. Kashtalyan, M. Menshykova, Three-dimensional elasticity solution for sandwich panels with a functionally graded core, Compos. Struct. 87 (2009) 36_43.
B. Woodward, M. Kashtalyan, Bending response of sandwich panels with graded core: 3D elasticity analysis, Mech. Adv. Mater. Struct. 17 (2010) 586_594.
M. Kashtalyan, Three-dimensional elasticity solution for bending of functionally graded rectangular plates, Eur. J. Mech. A/Solids 23 (2004) 853_864.
M. Kashtalyan, M. Menshykova, Effect of a functionally graded interlayer on three-dimensional elastic deformation of coated plates subjected to transverse loading, Compos. Struct. 89 (2009) 167_176.
E. Pan, Exact solution for functionally graded anisotropic elastic composite laminates, J. Compos. Mater. 37 (2003) 1903_1920.
A.N. Stroh, Steady state problems in anisotropic elasticity, J. Math. Phy. 41 (1962) 77_103.
C.P. Wu, R.Y. Jiang, The 3D coupled analysis of FGPM circular hollow sandwich cylinders under thermal loads, J. Intell. Mater. Sys. Struct. 22 (2011) 691_712.
C.P. Wu, T.C. Tsai, Exact solutions of functionally graded material sandwich cylinders by a modified Pagano method, Appl. Math. Modell. (2011) DOI: 10.1016/j.apm.2011.07.077.
W.Q. Chen, H.J. Ding, J. Liang, The exact elasto-electric field of a rotating piezoceramic spherical shell with a functionally graded property, Int. J. Solids Struct. 38 (2001) 7015_7027.
W.Q. Chen, H.J. Ding, R.Q. Xu, Three-dimensional static analysis of multilayered piezoelectric hollow spheres via the state space method, Int. J. Solids Struct. 38 (2001) 4921_4936.
W.Q. Chen, L.Z. Wang, Free vibration of functionally graded piezoelectric hollow spheres with radial polarization, J. Sound Vib. 251 (2002) 103_114.
C.P. Wu, K.Y. Lo, A state space approach for the analysis of doubly curved functionally graded elastic and piezoelectric shells, CMC_Comput. Mater. Continua 18 (2007) 177_199.
G.P. Dube, S. Kapuria, P.C. Dumir, Exact piezothermoelastic solution of simply-supported orthotropic circular cylindrical panel in cylindrical bending, Arch. Appl. Mech. 66 (1996) 537_554.
P.C. Dumir, G.P. Dube, S. Kapuria, Exact piezoelectric solution of simply-supported orthotropic circular cylindrical panel in cylindrical bending, Int. J. Solids Struct. 34 (1997) 685_702.
S. Kapuria, P.C. Dumir, S. Sengupta, Nonaxisymmetric exact piezothermoelastic solution for laminated cylindrical shell, AIAA J. 35 (1997) 1792_1795.
S. Kapuria, S. Sengupta, P.C. Dumir, Three-dimensional solution for a hybrid cylindrical shell under axisymmetric thermoelectric load, Arch. Appl. Mech. 67 (1997) 320_330.
C.P. Wu, Y.S. Syu, J.Y. Lo, Three-dimensional solutions for multilayered piezoelectric hollow cylinders by an asymptotic approach, Int. J. Mech. Sci. 49 (2007) 669_689.
C.P. Wu, Y.S. Syu, Exact solutions of functionally graded piezoelectric shells under cylindrical bending, Int. J. Solids Struct. 44 (2007) 6450_6472.
C.P. Wu, Y.H. Tsai, Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux, Int. J. Eng. Sci. 45 (2007) 744_769.
Y.H. Tsai, C.P. Wu, Dynamic responses of functionally graded magneto-electro-elastic shells with open-circuit surface conditions, Int. J. Eng. Sci. 46 (2008) 843_857.
A.M. Zenkour, A comprehensive analysis of functionally graded sandwich plates: Part 1_Deflection and stresses, Int. J. Solids Struct. 42 (2005) 5224_5242.
A.M. Zenkour, N.A. Alghamdi, Thermomechanical bending response of functionally graded nonsymmetric sandwich plates, J. Sandwich Struct. Mater. 12 (2010) 7_46.
A.M. Zenkour, A comprehensive analysis of functionally graded sandwich plates: Part 2_Buckling and free vibration, Int. J. Solids Struct. 42 (2005) 5243_5258.
A.M. Zenkour, Generalized shear deformation theory for bending analysis of functionally graded plates, Appl. Math. Modell. 30 (2006) 67_84.
F. Ramirez, P.R. Heyliger, E. Pan, Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach, Compos. Part B: Eng. 37 (2006) 10_20.
E. Carrera, S. Brischetto, M. Cinefra, M. Soave, Refined and advanced models for multilayered plates and shells embedding functionally graded material layers, Mech. Adv. Mater. Struct. 17 (2010) 603_621.
C.P. Wu, H.Y. Li, An RMVT-based third-order shear deformation theory of multilayered functionally graded material plates, Compos. Struct. 92 (2010) 2591_2605.
C.P. Wu, K.H. Chiu, Y.M. Wang, RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D analysis of multilayered composite and FGM plates, Compos. Struct. 93 (2011) 923_943.
C.P. Wu, K.H. Chiu, RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D free vibration analysis of multilayered composite and FGM plates, Compos. Struct. 93 (2011) 1433_1448.
C.P. Wu, S.W. Yang, RMVT-based meshless collocation and element-free Galerkin methods for the approximate 3D analysis of multilayered composite and FGM circular hollow cylinders, Compos. Part B: Eng. 42 (2011) 1683_1700.
E. Carrera, Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarks, Arch. Comput. Methods Eng. 10 (2003) 215_296.
E. Carrera, A. Ciuffreda, A unified formulation to assess theories of multilayered plates for various bending problems, Compos. Struct. 69 (2005) 271_293.
S. Brischetto, E. Carrera, Advanced mixed theories for bending analysis of functionally graded plates, Comput. Struct. 88 (2010) 1474_1483.
E. Carrera, S. Brischetto, A survey with numerical assessment of classical and refined theories for the analysis of sandwich plates, Appl. Mech. Rev. 62 (2009) 1_17.
E. Carrera, S. Brischetto, A. Robaldo, Variable kinematic model for the analysis of functionally graded material plates, AIAA J. 46 (2008) 194_203.
M. Cinefra, S. Belouettar, M. Soave, E. Carrera, Variable kinematic models applied to free-vibration analysis of functionally graded material shells, Eur. J. Mech. A/Solids 29 (2010) 1078_1087.
L. Demasi, Three-dimensional closed form solutions and theories for orthotropic plates, Mech. Adv. Mater. Struct. 17 (2010) 20_39.
L. Demasi, mixed plate theories based on the generalized unified formulation. Part I: Governing equations, Compos. Struct. 87 (2009) 1_11.
L. Demasi, mixed plate theories based on the generalized unified formulation. Part II: Layerwise theories, Compos. Struct. 87 (2009) 12_22.
L. Demasi, mixed plate theories based on the generalized unified formulation. Part III: Advanced mixed high order shear deformation theories, Compos. Struct. 87 (2009) 183_194.
L. Demasi, mixed plate theories based on the generalized unified formulation. Part IV: Zig-zag theories, Compos. Struct. 87 (2009) 195_205.
L. Demasi, mixed plate theories based on the generalized unified formulation. Part V: Results, Compos. Struct. 88 (2009) 1_16.
L. Demasi, 2D, quasi-3D and 3D exact solutions for bending of thick and thin sandwich plates, J. Sandwich Struct. Mater. 10 (2008) 271_310.
E. Carrera, M. Petrolo, Guidelines and recommendations to construct theories for metallic and composite plates, AIAA J. 48 (2010) 2852_2866.
Y.K. Cheung, C.P. Jiang, Finite layer method in analysis of piezoelectric composite laminates, Comput. Methods in Appl. Mech. Eng. 191 (2001) 879_901.
G. Akhras, W.C. Li, Three-dimensional static, vibration and stability analysis of piezoelectric composite plates using a finite layer method, Smart Mater. Struct. 16 (2007) 561_569.
G. Akhras, W.C. Li, Three-dimensional thermal buckling analysis of piezoelectric composite plates using the finite layer method, Smart Mater. Struct. 17 (2008) 1_8.
G. Akhras, W.C. Li, Three-dimensional stability analysis of piezoelectric antisymmetric angle-ply laminates using finite layer method, J. Intell. Mater. Sys. Struct. 21 (2010) 719_727.
C.P. Wu, H.Y. Li, The RMVT- and PVD-based finite layer methods for the three-dimensional analysis of multilayered composite and FGM plates, Compos. Struct. 92 (2010) 2476_2496.
C.P. Wu, H.Y. Li, RMVT- and PVD-based finite layer methods for the quasi-3D free vibration analysis of multilayered composite and FGM plates, CMC_Comput. Mater. Continua 19 (2010) 155_198.
T.K. Varadan, K. Bhaskar, Bending of laminated orthotropic cylindrical shells_An elasticity approach, Compos. Struct. 17 (1991) 141_156.
C.P. Wu, C.C. Liu, A local high-order deformable theory for thick laminated cylindrical shells, Compos. Struct. 29 (1994) 69_87.
A.K. Noor, P.L. Rarig, Three-dimensional solutions of laminated cylinders, Comput. Methods Appl. Mech. Eng. 3 (1974) 319_334.
C.P. Wu, S.W. Yang, RMVT-based meshless collocation and element-free Galerkin methods for the approximate 3D analysis of multilayered composite and FGM circular hollow cylinders, Compos. Part B: Eng. 42 (2011) 1683_1700.
C.P. Wu, Y.C. Lu, A modified Pagano method for the 3D dynamic responses of functionally graded magneto-electro-elastic plates, Compos. Struct. 90 (2009) 363_372.
C.T. Loy, K.Y. Lam, J.N. Reddy, Vibration of functionally graded cylindrical shells, International Journal of Mechanical Sciences. 41 (1999) 309-324.
Shahid Hussain Arshad, Muhammad Nawaz Naeem, Nazra Sultana, Abdul Ghafar Shah, Zafar Iqbal, Vibration analysis of bi-layered FGM cylindrical shells, Arch Appl Mech . 81(2011) 319–343.