簡易檢索 / 詳目顯示

研究生: 張瑜珊
Chang, Yu-Shan
論文名稱: 結合不同高緯電位模式之太空天氣資料同化系統於2015年聖派翠克節磁暴的現報和預報比較
Comparisons of the Forecast Capabilities Utilizing the Space Weather Data Assimilation Model With Various High Latitude Potential Models During the 2015 St. Patrick’s Day Storm
指導教授: 林建宏
Lin, Chien-Hung
陳佳宏
Chen, Chia-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 97
中文關鍵詞: 電離層資料同化電離層預報磁暴
外文關鍵詞: ionospheric data assimilation, ionospheric forecast, geomagnetic storm
相關次數: 點閱:133下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 劇烈的太陽磁暴所造成之電離層擾動會影響人類活動及民生系統,如定位與導航、電力或高頻通訊系統等,因此要如何準確地預測電離層在磁暴時的狀態是目前重要的課題。本研究使用資料同化的技術發展一套太空天氣預報系統 — Data Assimilation Research Testbed / Thermosphere-Ionosphere-Electrodynamics General Circulation Model 2.0 (DART/TIE-GCM 2.0),將全球地面GPS觀測之全電子含量運用系集卡爾曼濾波的方法 (由同化軟體DART執行) 同化至電離層物理模式TIE-GCM 2.0中,以重建2015年3月聖派翠克節磁暴的電子濃度三維結構與預報;再進一步於DART/TIE-GCM 2.0系統中結合Heelis、Weimer和AMIE三種不同的高緯度電位模式,並以方均根誤差以及方均根誤差百分比來評估這三個模式於此次磁暴事件,在低、中和高磁緯度地區的預報能力。研究發現造成此三個模式之電子濃度預報的差異不僅受高緯度能量輸入的影響,也和F層的緯向電場、F層傍晚的風場以及中性大氣組成,尤其是氧原子和氮分子的比值有重要的關聯。

    The severe geomagnetic storm can prompt ionospheric plasma disturbances, affecting human activities and systems, such as positioning and navigation, electrical or HF communication systems. Therefore, accurately predicting the state of the ionosphere during magnetic storm is an important topic so far. This study attempts to reconstruct the three-dimensional structure and forecast of ionospheric electron density during the 2015 St. Patrick's Day magnetic storm by the data assimilation approach. Using the ensemble-based Kalman filter system named data assimilation research testbed (DART), the global ground-based GPS total electron content (TEC) observations are assimilated into the physical-base thermosphere‐ionosphere‐electrodynamics general circulation model 2.0 (TIE-GCM 2.0). The full system is called DART/TIE-GCM 2.0, and we further combine it with the three different high latitude potential models, Heelis, Weimer and AMIE models. The forecast capabilities of these three assimilation models during this storm event are evaluated by the root‐mean‐square error (RMSE) values and the RMSE ratio in different magnetic latitude regions. Results show that the differences of the ionospheric electron density forecasts among these three models are not only affected by the high-latitude energy input but also greatly depended on the zonal electric field in the F layer, the wind field in the F layer around dusk, and the neutral composition, especially O/N2 ratio.

    摘要......I 英文延伸摘要......II 誌謝......VI 表目錄......X 圖目錄......XI 第一章 緒論......1 1.1電離層簡介......1 1.1.1電離層分層......1 1.1.2電離層形成機制......2 1.2 研究動機......7 1.3文獻回顧......10 第二章 研究方法......19 2.1 資料同化 (Data Assimilation) 技術......19 2.1.1卡爾曼濾波 (Kalman Filter)......20 2.1.2以系集為基礎的卡爾曼濾波 (Ensemble-Based Kalman Filter)......21 2.2 太空天氣預報模組—DART/TIE-GCM 2.0......26 2.2.1 DART......26 2.2.2 TIE-GCM......27 2.3觀測資料......28 2.4模擬條件設置......30 第三章 結果與討論......33 3.1 概述2015年聖派翠克節磁暴......33 3.2 DART/TIE-GCM模擬結果與討論......35 3.2.1 全球TEC分布結果......35 3.2.2 全球電場分布......40 3.2.3 全球風場分布......44 3.2.4 全球中性大氣組成分布......49 3.2.5 高緯度能量輸入及其影響......57 3.2.6 磁暴電子密度增強結構 (Storm-Enhanced Density structure, SED)......67 3.2.7 DART/TIE-GCM 2.0結合不同高緯度電位模式之現報與預報能力......70 3.3 24小時系集預報之模擬結果與討論......76 3.4 第三章總結......86 第四章 結論......88 參考文獻......89 附錄......95

    APPLETON, E. Two Anomalies in the Ionosphere. Nature 157, 691 (1946). https://doi.org/10.1038/157691a0.
    Anderson, J. L. (2001). An ensemble adjustment Kalman filter for data assimilation. Monthly Weather Review, 129(12), 2884-2903.
    Anderson, J. L., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., & Arellano, A. F. (2009). The Data Assimilation Research Testbed: A community data assimilation facility. Bull. Am. Meteorol. Soc., 90, 1283-1296, doi:10.1175/2009BAMS2618.1.
    Astafyeva, E., I. Zakharenkova, and M. Förster (2015), Ionospheric response to the 2015 St. Patrick's Day storm: A global multi‐instrumental overview, J. Geophys. Res. Space Physics, 120, 9023–9037, doi:10.1002/2015JA021629.
    Burgers, G., van Leeuwen, P. J., & Evensen, G. (1998). Analysis scheme in the ensemble Kalman filter. Monthly Weather Review, 126(6), 1719-1724.
    Bishop, C. H., Etherton, B. J., & Majumdar, S. J. (2001). Adaptive Sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical Aspects. Monthly Weather Review, 129(3), 420-436.
    Brian R. Hunt, Eric J. Kostelich, Istvan Szunyogh, Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter, Physica D: Nonlinear Phenomena, Volume 230, Issues 1–2, 2007, Pages 112-126, ISSN 0167-2789, https://doi.org/10.1016/j.physd.2006.11.008.
    Chartier, A. T., D. R. Jackson, and C. N. Mitchell (2013), A comparison of the effects of initializing different thermosphere‐ionosphere model fields on storm time plasma density forecasts, J. Geophys. Res. Space Physics, 118, 7329–7337, doi:10.1002/2013JA019034.
    Cherniak, I., Zakharenkova, I., & Redmon, R. J. (2015). Dynamics of the high‐latitude ionospheric irregularities during the 17 March 2015 St. Patrick's Day storm: Ground‐based GPS measurements. Space Weather, 13(9), 585–597. https://doi.org/10.1002/2015SW00123
    Cherniak, I., & Zakharenkova, I. (2016). High‐latitude ionospheric irregularities: Differences between ground‐ and space‐based GPS measurements during the 2015 St. Patrick's Day storm. Earth, Planets and Space, 68(1), 1–13. https://doi.org/10.1186/s40623‐016‐0506‐1
    Chen, C. H., C. H. Lin, T. Matsuo, W. H. Chen, I. T. Lee, J. Y. Liu, J. T. Lin, and C. T. Hsu (2016a), Ionospheric data assimilation with thermosphere‐ionosphere‐electrodynamics general circulation model and GPS‐TEC during geomagnetic storm conditions, J. Geophys. Res. Space Physics, 121, 5708–5722, doi:10.1002/2015JA021787.
    Chen, C. H., Lin, C. H., Matsuo, T., and Chen, W. H. (2016b), Ionosphere data assimilation modeling of 2015 St. Patrick’s Day geomagnetic storm, J. Geophys. Res. Space Physics, 121, 11,549– 11,559, doi:10.1002/2016JA023346.
    Chen, C. H., C. C. H. Lin, J. Y. Liu, T. Matsuo, and W. H. Chen, 2017: The impact of FORMOSAT-5/AIP observations on the ionospheric space weather. Terr. Atmos. Ocean. Sci., 28, 129-137, doi: 10.3319/TAO.2016.09.30.01(EOF5)
    Evensen, G. (1994). Sequential Data Assimilation with a Nonlinear Quasi-Geostrophic Model Using Monte-Carlo Methods to Forecast Error Statistics. Journal of Geophysical Research-Oceans, 99(C5), 10143-10162.
    Fuller‐Rowell, T. J., M. V. Codrescu, R. G. Roble, and A. D. Richmond (1997), How does the thermosphere and ionosphere react to a geomagnetic storm?, in Magnetic Storm, Geophys. Monogr. Ser., vol. 98, pp. 203–205, AGU, Washington, D. C.
    Foster J.C., A.J. Coster, P.J. Erickson, J.M. Holt, F.D. Lind, W. Rideout, M. McCready, A. Van Eyken, R.J. Barnes, R.A. Greenwald, F.J. Rich, Multiradar observations of the polar tongue of ionization. J. Geophys. Res. 110, A09S31 (2005). doi:10.1029/2004JA010928.
    Fuller‐Rowell, T.J., Richmond, A.D. and Maruyama, N. (2008). Global Modeling of Storm‐Time Thermospheric Dynamics and Electrodynamics. In Midlatitude Ionospheric Dynamics and Disturbances (eds P.M. Kintner, A.J. Coster, T. Fuller‐Rowell, A.J. Mannucci, M. Mendillo and R. Heelis). https://doi.org/10.1029/181GM18.
    Gaspari, G., & Cohn, S. E. (1999). Construction of correlation functions in two and three dimensions. Quarterly Journal of the Royal Meteorological Society, 125(554), 723-757.
    Heelis, R. A., J. K. Lowell, and R. W. Spiro (1982), A model of the high‐latitude ionospheric convection pattern, J. Geophys. Res., 87(A8), 6339–6345.
    Hamill, T. M., Whitaker, J. S., & Snyder, C. (2001). Distance-Dependent Filtering of Background Error Covariance Estimates in an Ensemble Kalman Filter. Monthly Weather Review, 129(11), 2776-2790.
    Houtekamer, P. L., & Mitchell, H. L. (2001). A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation. Monthly Weather Review, 129(1), 123-137.
    Hofmann-Wellenhof, B., Lichtenegger, H., and Collins, J., 2001, Global PositioningSystem: Theory and Practice, Springer-Verlag, New York.
    Hajj, G. A., Wilson, B. D., Wang, C., Pi, X., and Rosen, I. G. (2004), Data assimilation of ground GPS total electron content into a physics‐based ionospheric model by use of the Kalman filter, Radio Sci., 39, RS1S05, doi:10.1029/2002RS002859.
    Heelis R.A., Electrodynamics in the low and middle latitude ionosphere: a tutorial, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 66, Issue 10, 2004, Pages 825-838, ISSN 1364-6826, https://doi.org/10.1016/j.jastp.2004.01.034.
    Heelis, R. A., G. Crowley, F. Rodrigues, A. Reynolds, R. Wilder, I. Azeem, and A. Maute (2012), The role of zonal winds in the production of a pre‐reversal enhancement in the vertical ion drift in the low latitude ionosphere, J. Geophys. Res., 117, A08308, doi:10.1029/2012JA017547.
    Hsu, C.-T., T. Matsuo, W. Wang, and J.-Y. Liu (2014), Effects of inferring unobserved thermospheric and ionospheric state variables by using an Ensemble Kalman Filter on global ionospheric specification and forecasting, J. Geophys. Res. Space Physics, 119, 9256–9267, doi:10.1002/2014JA020390.
    Hsu, C.-T. (2018), GNSS RO data assimilation of ionospheric numerical weather prediction, PhD thesis, Institute of Space Science, National Central Univ., Zhongli, Taoyuan, Taiwan.
    Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems, Journal of Basic Engineering, 82(1), 35-45.
    Kalman, R. E., & Bucy, R. S. (1961). New Results in Linear Filtering and Prediction Theory, Journal of Basic Engineering, 83(1), 95-108.
    Liu, J. Y., H. F. Tsai, and T. K. Jung (1996), Total electron content obtained by using the Global Positioning System, Terr. Atmos. Oceanic Sci., 7, 107–117.
    Lee, I. T., Matsuo, T., Richmond, A. D., Liu, J. Y., Wang, W., Lin, C. H., Anderson, J. L., and Chen, M. Q. (2012), Assimilation of FORMOSAT‐3/COSMIC electron density profiles into a coupled thermosphere/ionosphere model using ensemble Kalman filtering, J. Geophys. Res., 117, A10318, doi:10.1029/2012JA017700.
    Lee, I. T. (2013), Assimilation of radio occultation data observed by FORMOSAT-3/COSMIC into a coupled Thermosphere/Ionosphere model, PhD thesis, Institute of Space Science, National Central Univ., Zhongli, Taoyuan, Taiwan.
    Lu, G., Richmond, A. D., Lühr, H., and Paxton, L. (2016), High‐latitude energy input and its impact on the thermosphere, J. Geophys. Res. Space Physics, 121, 7108– 7124, doi:10.1002/2015JA022294.
    Martyn D. F., (1947), Atmospheric tides in the ionosphere - I. Solar tides in the F2 region. Proc. R. Soc. Lond. A 189:241–260, http://doi.org/10.1098/rspa.1947.0037.
    Nelson G.J., L.L. Cogger, Dynamical behaviour of the nighttime ionosphere at Arecibo, Journal of Atmospheric and Terrestrial Physics, Volume 33, Issue 11, 1971, Pages 1711-1726, ISSN 0021-9169, https://doi.org/10.1016/0021-9169(71)90219-4.
    National Center for Atmospheric Research (2006)。Data Assimilation Research Testbed Tutorial, from /home/jla/DART/tutorial/section1/tut_section1.fm.
    Nava, B., J. Rodriguez‐Zuluaga, K. Alazo‐Cuartas, A. Kashcheyev, Y. Migoya‐Orué, S. M. Radicella, C. Amory‐Mazaudier, and R. Fleury (2016), Middle‐ and low‐latitude ionosphere response to 2015 St. Patrick's Day geomagnetic storm, J. Geophys. Res. Space Physics, 121, 3421–3438, doi:10.1002/2015JA022299.
    Prölss, G.W. (1997). Magnetic Storm Associated Perturbations of the Upper Atmosphere. In Magnetic Storms (eds B.T. Tsurutani, W.D. Gonzalez, Y. Kamide and J.K. Arballo). https://doi.org/10.1029/GM098p0227.
    Pi, X., Mannucci, A. J., Iijima, B. A., Wilson, B. D., Komjathy, A., Runge, T. F., & Akopian, V. (2009). Assimilative modeling of ionospheric disturbances with FORMOSAT-3/COSMIC and ground-based GPS measurements. TAO : Terrestrial, Atmospheric and Oceanic Sciences, 20(1), 2-285. doi:http://dx.doi.org/10.3319/TAO.2008.01.04.01(F3C).
    Pfaff, R. F. (2012). The near-Earth plasma environment. Space science reviews, 168(1-
    4), 23-112, doi:10.1007/S11214-012-9872-6.
    Qian, L., A. G. Burns, B. A. Emery, B. Foster, G. Lu, A. Maute, A. D. Richmond, R. G. Roble, S. C. Solomon, and W. Wang (2012), The NCAR TIE-GCM: A community model of the coupled thermosphere/ionosphere system, Am. Geophys. Monogr., doi:10.1029/2012GM001297.
    Rishbeth H., The effect of winds on the ionospheric F2-peak. J. Atmos. Sol.-Terr. Phys. 29, 225–288 (1967).
    Rishbeth H., T.J. Fuller-Rowell, A.S. Rodger, F-layer storms and thermospheric composition. Phys. Scr. 36, 327–336 (1987).
    Richmond, A. D., and Y. Kamide (1988), Mapping electrodynamic features of the high‐latitude ionosphere from localized observations: Technique, J. Geophys. Res., 93, 5741–5759.
    Roble, R. G., E. C. Ridley, A. D. Richmond, and R. E. Dickinson (1988), A coupled thermosphere/ionosphere general circulation model, Geophys. Res. Lett., 15, 1325.
    Richmond, A. D., E. C. Ridley, and R. G. Roble (1992), A thermosphere/ionosphere general circulation model with coupled electrodynamics, Geophys. Res. Lett., 19, 601.
    Richmond, A. D., and G. Lu (2000), Upper‐atmospheric effects of magnetic storms: A brief tutorial, J. Atmos. Sol. Terr. Phys., 62, 1115–1127.
    Richmond, A. D., T.‐W. Fang, and A. Maute (2015), Electrodynamics of the equatorial evening ionosphere: 1. Importance of winds in different regions, J. Geophys. Res. Space Physics, 120, 2118–2132, doi:10.1002/2014JA020934.
    Strickland, D. J., Daniell, R. E., and Craven, J. D. (2001), Negative ionospheric storm coincident with DE 1‐observed thermospheric disturbance on October 14, 1981, J. Geophys. Res., 106(A10), 21049– 21062, doi:10.1029/2000JA000209.
    Scherliess, L., Schunk, R. W., Sojka, J. J., and Thompson, D. C. (2004), Development of a physics‐based reduced state Kalman filter for the ionosphere, RadioSci.,39, RS1S04, doi:10.1029/2002RS002797.
    Schunk, R. W., et al. (2004), Global Assimilation of Ionospheric Measurements (GAIM), Radio Sci., 39, RS1S02, doi:10.1029/2002RS002794.
    Stolle, C., Manoj, C., Lühr, H., Maus, S., and Alken, P. (2008), Estimating the daytime Equatorial Ionization Anomaly strength from electric field proxies, J. Geophys. Res., 113, A09310, doi:10.1029/2007JA012781.
    Scherliess, L., Thompson, D. C., and Schunk, R. W. (2009), Ionospheric dynamics and drivers obtained from a physics‐based data assimilation model, Radio Sci., 44, RS0A32, doi:10.1029/2008RS004068.
    Tulasi Ram, S., et al. (2016), Duskside enhancement of equatorial zonal electric field response to convection electric fields during the St. Patrick’s Day storm on 17 March 2015, J. Geophys. Res. Space Physics, 121, 538–548, doi:10.1002/2015JA021932.
    Whitaker, J. S., & Hamill, T. M. (2002). Ensemble data assimilation without perturbed observations. Monthly Weather Review, 130(7), 1913-1924.
    Weimer, D. R. (2005), Improved ionospheric electrodynamic models and application to calculating Joule heating rates, J. Geophys. Res., 110, A05306, doi:10.1029/2004JA010884.
    Zhang, S.‐R., Erickson, P. J., Zhang, Y., Wang, W., Huang, C., Coster, A. J., et al. (2017). Observations of ion‐neutral coupling associated with strong electrodynamic disturbances during the 2015 St. Patrick's Day storm. Journal of Geophysical Research: Space Physics, 122, 1314–1337. https://doi.org/10.1002/2016JA023307.

    下載圖示 校內:2023-01-01公開
    校外:2023-10-16公開
    QR CODE