簡易檢索 / 詳目顯示

研究生: 翁彰鍵
Wong, Chang-Chien
論文名稱: 成長於矽基板上之氮化鎵系列光檢測器
GaN Based Photodetectors Prepared on Silicon Substrate
指導教授: 陳志方
Chen, Jone-Fang
張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 74
中文關鍵詞: 光檢測器響應雜訊矽基板氮化鎵
外文關鍵詞: Si substrate, GaN, photodetector, responsivity, noise
相關次數: 點閱:68下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    在本論文中我們討論了氮化鎵系列磊晶層成長在矽(111)基板上基本特性。我們藉由量測雙晶格X光繞射及光激發光光譜來得到氮化鎵系例磊晶層的光學特性及物理特性。我們可以因此而得知對輕微摻雜的n型氮化鎵磊晶層(n¯-GaN),其最大光激發光的強度發生波長為365.467 nm且其最大半高寬為10.49 nm,同時雙晶格X光繞射的結果,可得知其最大半高寬為232.11 arcsec;對未摻雜氮化鎵磊晶層(u-GaN),其最大光激發光的強度發生波長則為368.949 nm且其最大半高寬為8.33 nm,由雙晶格X光繞射結果可得知其最大半高寬為228.33 arcsec。

    以上我們使用在成長在矽(111)基板上的u-GaN及n¯-GaN 磊晶層材料來製作紫外光金屬-半導體-金屬光檢測器(UV MSM photodetectors)。我們也將就所製作而成的元件進行量測且探討其特性。在電流-電壓的關係圖中,我們可以得知即使在偏壓15伏特時,元件的暗電流密度仍然可以維持在大約10^-7~10^-8 A/cm^2。同時我們也可以量得對u-GaN MSM photodetectors來說,使用鎳/金(Ni/Au)當做蕭基電極時,在5伏特下,可以得到其最高的光響應發生在波長355 nm,其值為0.00653 A/W,量子效率為2.3%;而使用鎢化鈦(TiW)當做蕭基電極時,在5伏特下,可以得到其最高的光響應發生在波長360 nm,其值為0.01067 A/W,量子效率為3.68%。另外,對n¯-GaN MSM photodetectors來說,使用鎳/金(Ni/Au)當做蕭基電極時,在5伏特下,可以得到其最高的光響應發生在波長360 nm,其值為0.08932 A/W,量子效率為30.8%;而使用鎢化鈦(TiW)當做蕭基電極時,在5伏特下,可以得到其最高的光響應發生在波長359nm,其值為0.27127 A/W,量子效率為94.0%。由以上的結果我們可以發現在使用鎢化鈦(TiW)當做蕭基電極時,我們可以得到較佳的量子效率及光響應特性。在一個給定的頻寬1 kHz、檢測器工作區面積4.06×10^-3 cm^2下,對u-GaN MSM photodetectors元件,使用鎳/金(Ni/Au)當做蕭基電極和1伏特下,最低的雜訊等效功率為2.476×10^-11 W,且最高的正規化檢測度為8.095×10^10 cmHz^0.5W^-1;使用鎢化鈦(TiW)當做蕭基電極和5伏特下,最低的雜訊等效功率為2.378×10^-11 W ,且最高的正規化檢測度為8.428×10^10 cmHz^0.5W^-1。對n¯-GaN MSM photodetectors元件,使用鎳/金(Ni/Au)當做蕭基電極和5伏特下,最低的雜訊等效功率為2.296×10^-12 W,且最高的正規化檢測度為8.730×10^11 cmHz^0.5W^-1;使用鎢化鈦(TiW)當做蕭基電極和5伏特下,最低的雜訊等效功率為8.140×10^-13 W,且最高的正規化檢測度為2.462×10^12 cmHz0.5W^-1。

    最後,我們也使用在成長在矽(111)基板上的u-GaN及n¯-GaN 磊晶層材料來製作紫外光蕭基二極體(UV Schottky diodes),並且進行量測及探討。在電流-電壓的關係圖中,我們可以得知即使在偏壓15伏特時,元件的暗電流密度仍然可以維持在大約10^-7~10^-8 A/cm^2。同時我們也可以量得對u-GaN Schottky diodes來說,使用鎳/金(Ni/Au)當做蕭基電極時,在5伏特下,可以得到其最高的光響應發生在波長356 nm,其值為0.01010 A/W,量子效率為3.5%;而使用鎢化鈦(TiW)當做蕭基電極時,在5伏特下,可以得到其最高的光響應發生在波長360nm,其值為0.01287 A/W,量子效率為6.5%。另外,對n¯-GaN Schottky diodes來說,使用鎳/金(Ni/Au)當做蕭基電極時,在5伏特下,可以得到其最高的光響應發生在波長360nm,其值為0.09720 A/W,量子效率為33.5%;而使用鎢化鈦(TiW)當做蕭基電極時,在5伏特下,可以得到其最高的光響應發生在波長359 nm,其值為0.20919 A/W,量子效率為72.4%。由以上的結果我們可以發現在使用鎢化鈦(TiW)當做蕭基電極時,我們可以得到較佳的量子效率及光響應特性。在一個給定的頻寬1 kHz、檢測器工作區面積1.26×10^-3 cm^2下,對u-GaN Schottky diodes元件,使用鎳/金(Ni/Au)當做蕭基電極和1伏特下,最低的雜訊等效功率為2.157×10^-11 W,且最高的正規化檢測度為5.172×10^10 cmHz^0.5W^-1;使用鎢化鈦(TiW)當做蕭基電極和3伏特下,最低的雜訊等效功率為1.005×10^-11 W,且最高的正規化檢測度為1.110×10^11 cmHz^0.5W^-1。對n¯-GaN Schottky diodes元件,使用鎳/金(Ni/Au)當做蕭基電極和5伏特下,最低的雜訊等效功率為2.943×10^-12 W,且最高的正規化檢測度為3.790×10^11 cmHz^0.5W^-1;使用鎢化鈦(TiW)當做蕭基電極和5伏特下,最低的雜訊等效功率為1.034×10^-12 W,且最高的正規化檢測度為1.079×10^12 cmHz^0.5W^-1。

    由以上的結果我們同樣可以發現在使用鎢化鈦(TiW)當做蕭基電極時,我們可以得到較低的雜訊等效功率及較佳的正規化檢測度。

    Abstract
    In this thesis, we discussed the characteristics of GaN-based epitaxial layers prepared on Si(111) substrates. We study the double-crystal X-ray diffraction (DCXRD) and photoluminescence (PL) of u-GaN and n¯-GaN epitaxial layers. The peak and FWHM of PL spectra were 365.467 nm and 10.49 nm for n¯-GaN, 368.949 nm and 8.33 nm for u-GaN epitaxial layers prepared on Si(111) substrate, respectively. And the FWHM of DCXRD were 232.11 arcsec and 228.33 arcsec for n¯-GaN and u-GaN epitaxial layers prepared on Si(111) substrate, respectively.

    Then, u-GaN and n¯-GaN epitaxial layers preapared on Si(111) substrates were used to fabricate ultra-violet (UV) metal-semiconductor-metal (MSM) photodetectors. We also discussed the characteristics of u-GaN and n¯-GaN MSM photodetectors. It can be found that the dark current density is about 10^-7~10^-8 A/cm^2 even at 15 V for u-GaN and n¯-GaN MSM photodetectors. And we also found that the maximum quantum efficiency of our u-GaN MSM photodetectors can reach 2.3% at 355 nm with a peak responsivity of 0.00653 A/W for Ni/Au electrode and 3.68% at 360 nm with a peak responsivity of 0.01067 A/W for TiW electrode. We also found that the maximum quantum efficiency of our n¯-GaN MSM photodetectors can reach 30.8% at 360 nm with a peak responsivity of 0.08932 A/W for Ni/Au electrode and 94.0% at 359 nm with a peak responsivity of 0.27127 A/W for TiW electrode. For these results, we can get a higher quantum efficiency by using TiW electrode than Ni/Au electrode. For u-GaN MSM photodetectors, it was found that we achieved the minimum NEP of 2.476×10-^11 W and the maximum D* of 8.095×10^10 cmHz^0.5W^-1 with a 1 V applied bias for Ni/Au electrodes, and the minimum NEP of 2.378×10^-11 W and the maximum D* of 8.428×10^10 cmHz^0.5W^-1 with a 5 V applied bias for TiW electrodes. For n¯-GaN MSM photodetectors, it was found that we achieved the minimum NEP of 2.296×10^-12 W and the maximum D* of 8.730×10^11 cmHz^0.5W^-1 with a 5V applied bias for Ni/Au electrodes, and the minimum NEP of 8.140×10^-13 W and the maximum D* of 2.462×10^12 cmHz^0.5W^-1 with a 5V applied bias for TiW electrodes.

    Finally, GaN-based UV Schottky diodes prepared on Si(111) substrates with Ni/Au and TiW Schottky electrodes were fabricated and characteristized. It can be found that the dark current density is about 10^-7~10^-8 A/cm^2 even at 15 V for u-GaN and n¯-GaN Schottky diodes. We also found that the maximum quantum efficiency of our u-GaN Schottky diodes can reach 3.5% at 356 nm with a peak responsivity of 0.01010 A/W for Ni/Au electrode and 6.5% at 360 nm with a peak responsivity of 0.01287 A/W for TiW electrode. We also found that the maximum quantum efficiency of our n¯-GaN Schottky diodes can reach 33.5% at 360 nm with a peak responsivity of 0.09720 A/W for Ni/Au electrode and 72.4% at 359 nm with a peak responsivity of 0.20919 A/W for TiW electrode. For u-GaN Schottky diodes, it was found that we achieved the minimum NEP of 2.157×10^-11 W and the maximum D* of 5.172×10^10 cmHz^0.5W^-1 with a 1V applied bias for Ni/Au electrodes, and the minimum NEP of 1.005×10^-11 W and the maximum D* of 1.110×10^11 cmHz^0.5W^-1 with a 3 V applied bias for TiW electrodes. For n¯-GaN Schottky diodes, it was found that we achieved the minimum NEP of 2.943×10^-12 W and the maximum D* of 3.790×10^11 cmHz^0.5W^-1 with a 5 V applied bias for Ni/Au electrodes, and the minimum NEP of 1.034×10^-12 W and the maximum D* of 1.079×10^12 cmHz^0.5W^-1 with a 5 V applied bias for TiW electrodes.

    Content Abstract (in Chinese)----------------------------------------------------------------------------------------------------------------I Abstract (in English)----------------------------------------------------------------------------------------------------------------V Contents------------------------------------------------------------------------------------------------------------------------------IX Table Captions---------------------------------------------------------------------------------------------------------------------XII Figure Captions-------------------------------------------------------------------------------------------------------------------XIII Chapter 1. Introduction--------------------------------------------------------------------------------------------------------------1 1-1. Background and Motivation--------------------------------------------------------------------------------------------------1 1-2. Organization of This Thesis---------------------------------------------------------------------------------------------------4 Chapter 2. The Optical and Physical Properties of Nitride-based Materials Prepared on Si Substrate----------------10 2-1. The Designed Structures of n¯-GaN and u-GaN Epi-layers Prepared on Silicon Substrates----------------------10 2-2. The XRD Analysis of the Structures----------------------------------------------------------------------------------------13 2-3. The PL Analysis of the Structures-------------------------------------------------------------------------------------------13 2-4. Summary-------------------------------------------------------------------------------------------------------------------------13 Chapter 3. The Fabrications and Characteristics of GaN-based MSM Photodetectors Prepared on Si Substrate---20 3-1. The Fabrication of GaN-based MSM Photodetectors--------------------------------------------------------------------21 3-2. The Current-Voltage Characteristics of GaN-based MSM Photodetectors-------------------------------------------22 3-3. The Responsivity of GaN-based MSM Photodetectors------------------------------------------------------------------22 3-4. Low Frequency Noise Characteristics of GaN-based MSM Photodetectors-----------------------------------------24 3-4-1. Types of Low Frequency Noise-------------------------------------------------------------------------------------------24 3-4-2. Noise Characteristics of GaN-based MSM Photodetectors-----------------------------------------------------------28 3-5. Summary-------------------------------------------------------------------------------------------------------------------------31 Chapter 4. The Fabrications and Characteristics of GaN-based Schottky Diodes Prepared on Si Substrate---------49 4-1. The Fabrication of GaN-based Schottky Diodes--------------------------------------------------------------------------49 4-2. The Current-Voltage Characteristics of GaN-based Schottky Diodes-------------------------------------------------50 4-3. The Responsivity of GaN-based Schottky Diodes------------------------------------------------------------------------51 4-4. Low Frequency Noise Characteristics of GaN-based Schottky Diodes-----------------------------------------------52 4-5. Summary-------------------------------------------------------------------------------------------------------------------------54 Chapter 5. Conclusion and Future Work-----------------------------------------------------------------------------------------70 5-1. Conclusion-----------------------------------------------------------------------------------------------------------------------70 5-2. Future Work---------------------------------------------------------------------------------------------------------------------72

    Chapter 1
    References
    [1] S. Nakamura, Jpn. J. Appl. Phy., Vol. 36, No 12A, Dec., L1568 (1997)
    [2] H. Morkoe, S. Strite, G. B. Gao, M. E. Lin, B. Sveerdlov, and M. Burn, J. Appl. Phys., Vol. 76, 1363 (1994)
    [3] E. Monroy, T. palacios, O. Hainaut, F. Omnes, F. Calle, and J. F. Hochedez, Appl. Phys. Lett., Vol. 80, No. 17, pp. 3198-3200 (2002)
    [4] E. Monroy, F. Calle, E. Muoz, and F. Omns, Appl. Phys. Lett., Vol. 74, No. 22, pp. 3401-3403 (1999)
    [5] T. Palacios, E. Monroy, F. Calle, and F. Omns, Appl. Phys. Lett., Vol. 81, No. 10, pp. 1902-1904 (2002)
    [6] J. Lia, Y. Xu, T. Y. Hsiang, and W. R. Donaldson, Appl. Phys. Lett., Vol. 84, No. 12, pp. 2091-2093 (2004)
    [7] J. L. Pau, C. Rivera, E. Muoz, E. Calleja, U. Schuhle, E. Frayssinet, B. Beaumont, J. P. Faurie, and P. Gibart, J. Appl. Phys., Vol. 95, No. 12, pp. 8275-8279 (2004)
    [8] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and K. T. Ilson, Appl. Phys. Lett., Vol. 62, 1786 (1993)
    [9] Z. M. Zhao, R. L. Jiang, P. Chen, D. J. Xi, Z. Y. Luo, R. Zhang, B. Shen, Z. Z. Chen, and Y. D. Zheng, Appl. Phys. Lett., Vol. 77, 444 (2000)
    [10] A. Osinsky, S. Gangopadhyay, J. W. Yang, R. Gaska, D. Kuksenkov, H. Temkin, I. K. Shmagin, Y. C. Chang, J. F. Muth, and R. M. Kolbas, Appl. Phys. Lett., Vol. 72, 551 (1998)
    [11] J. L. Pau, E. Monroy, F. B. Naranjo, Muoz, F. Calle, M. A. Snchez-Garcia, and E. Calleja, Appl. Phys. Lett., Vol. 76, 2785 (2000)
    [12] C. L. Joseph, Exp. Astron., Vol. 6, 97 (1995)
    [13] T. Takeuchi, H. Amano, K. Hiramatsu, N. Sawaki, I. Akasaki, J. Cryst. Growth, Vol. 115 (1-4), 634-638 (1991)
    [14] T. Lei, T. D. Moustakas, R. J. Graham, Y. He, S. J. Berkowitz, J. Appl. Phys., Vol. 71 (10), 4933-4943 (1992)
    [15] A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, I. Akasaki, J. Cryst. Growth, Vol. 128(1-4), 391-396 Part 1 (1993)
    [16] K. Hirosawa, K. Hiramatsu, N. Sawaki, I. Akasaki, Jpn. J. Appl. Phys. part 2-Letters, Vol. 32 (8A),L1039-L1042 (1993)
    [17] H. Liu, A. C. Frenkel, J. G. Kim, R. M. Park, J. Appl. Phys., Vol. 74 (10), 6124-6127 (1993)
    [18] J. G. Kim, A. C. Frenkel, H. Liu, R.M. Park, Appl. Phys. Lett., Vol. 65 (1), 91-93 (1994)
    [19] A. Yamamoto, M. Tsujino, M. Ohkubo, A. Hashimoto, J. Cryst. Growth, Vol. 137 (3-4): 415-420 (1994)
    [20] T. Hashimoto, O. Imafuji, M. Ishida, Y. Terakoshi, T. Sugino, A. Yoshikawa, K. Itoh, J. Shirafuji, J. Cryst. Growth, Vol. 169 (1), 185-189 (1996)
    [21] N. P. Kobayashi, J. T. Kobayashi, W. J. Choi, P. D. Dapkus, X. G. Zhang, D. H. Rich, J. Cryst. Growth, Vol. 189, 172-177 (1998)
    [21] A. Strittmatter, A. Krost, V. Turck, M. Strassburg, D. Bimberg, J. Blasing, T. Hempel, J. Christen, B. Neubauer, D. Gerthsen, T. Christmann, B. K. Meyer, Mater. Sci. and Eng. B, Vol. 59 (1-3): 29-32 (1999)
    [23] X. Zhang, S. J. Chua, Z. C. Feng, J. Chen, J. Lin, Phys. Stat. Sol. (a), Vol. 176 (1): 605-609 (1999)
    [24] H. M. Liaw, R. Venugopal, J. Wan, R. Doyle, P. L. Fejes, M. R. Melloch, Solid-State Electron., Vol. 44 (4),685-690 (2000)
    [25] H. Ishikawa, G. Y. Zhao, N. Nakada, T. Egawa, T. Jimbo, M. Umeno, Jpn. J. Appl. Phys. part 2-Letters, Vol. 38 (5A), L492-L494 (1999)
    [26] J. W. Lee, S. H. Jung, H. Y. Shin, I. H. Lee, C. W. Yang, S. H. Lee, J. B. Yoo, J. Cryst. Growth, Vol. 237, 1094-1098 Part 2 (2002)
    [27] Y. Honda, Y. Kuroiwa, M. Yamaguchi, N. Sawaki, J. Cryst. Growth, Vol. 242, 77–81 (2002)
    [28] S. H. Jang, S. J. Lee, I. S. Seo, H. K. Ahn, O. Y. Lee, J. Y. Leem, C. R. Lee, J. Cryst. Growth, Vol. 241, 289–296 (2002)
    [29] J. J. Wu, D. B. Li, Y. Lu, X. X. Han, J. M. Li, H. Y. Wei, T. T. Kang, X. H. Wang, X. L. Liu, Q. S. Zhu, Z. G. Wang, J. Cryst. Growth, Vol. 273 (1-2), 79-85 (2004)
    [30] Y. Lu, G. W. Cong, X. L. Liu, D. C. Lu, Q. S. Zhu, X. H. Wang, J. J. Wu, Z. G. Wang, J. Appl. Phys., Vol. 96 (9), 4982-4988 (2004)

    Chapter 2
    References
    [1] H. P. Maruska, J. J. Tietjen, Appl. Phys. Lett., Vol. 15, 327 (1969)
    [2] Y. Okada, Y. Tokumaru, J. Appl. Phys., Vol. 56, 314 (1984)
    [3] T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide, K. Manabe, J. Appl. Phys., Vol. 77, 4389 (1995)
    [4] A. Dadgar, J. Blsing, A. Diez, A. Alam, M. Heuken, A. Korst, Jpn. J. Appl. Phys., Vol. 39, L1183 (2000)
    [5] A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, I. Akasaki, J. Cryst. Growth, Vol. 128(1-4), 391-396 Part 1 (1993)
    [6] S. Ohkoshi, Y. Iiljima, T. Nagatomo and O. Ohmoto, Tenth Record of Alloy Semiconductor Physics and Electronics Symp., Nagoya, p.p. 157 (1991)
    [7] T. Takeuchi, H. Amano, K. Hiramatsu, N. Sawaki, I. Akasaki, J. Cryst. Growth, Vol. 115 (1-4), 634-638 (1991)
    [8] N. R. Perkins, M. N. Norton, Z. Z. Bandic, T. C. McGill and T. F. Kuech, Mater. Res. Soc. Symp. Proc., Vol. 395, 243 (1996)
    [9] N. P. Kobayashi, J. T. Kobayashi, W. J. Choi, P. D. Dapkus, X. G. Zhang, D. H. Rich, J. Cryst. Growth, Vol. 189, 172-177 (1998)
    [10] Y. Kawaguchi, Y. Honda, H. Matsushima, M. Yamaguchi, K. Hiramatsu and N. Sawaki, Jpn. J. Appl. Phys., Vol. 37, L996 (1998)
    [11] H. Ishikawa, G. Y. Zhao, N. Nakada, T. Egawa, T. Jimbo, M. Umeno, Jpn. J. Appl. Phys. part 2-Letters, Vol. 38 (5A), L492-L494 (1999)
    [12] S. H. Jang, C. R. Lee, J. Cryst. Growth, Vol. 253, 64-70 (2003)

    Chapter 3
    References
    [1] J. I. Pankove, Mater. Res. Soc. Symp. Proc., Vol. 162, 515 (1990)
    [2] A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, I. Akasaki, J. Cryst. Growth, Vol. 128(1-4), 391-396 Part 1 (1993)
    [3] Y. Z. Chiou, Y. K. Su, S. J. Chang, J. Gong, Y. C. Lin, S. H. Liu, and C. S. Chang, IEEE J. Quan. Electron., Vol. 39, 681 (2003)
    [4] E. Monroy, E. Muňoz, F. J. Snchez, F. Calley, E. Calleja, B. Beaumont, P. Gibart, J. A. Muňoz, and F. Cuss, Semicond. Sci. Tec., Vol. 13, 1042 (1998)
    [5] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoc, G. Smith, M. Estes, B. Goldenberg, W. Yang, and S. Krishnankutty, Appl. Phys. Lett., Vol. 71, 2154 (1997)
    [6] N. Biyikli, I Kimukin, O. Aytur, and E. Ozbay, IEEE Photon. Technol. Lett., Vol. 16, 1718 (2004)
    [7] N. Biyikli, I Kimukin, T. Tut, T. Kartaloglu, O. Aytur, and E. Ozbay, Semicond. Sci. Technol., Vol. 19, 1259 (2004)
    [8] G. Parich, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaar, U. K. Mishra, and E. J. Tarsa, Appl. Phys. Lett., Vol. 75, 247 (1999)
    [9] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, Appl. Phys. Lett., Vol. 71, 2334 (1997)
    [10] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, Appl. Phys. Lett., Vol. 80, 347 (2002)
    [11] V. Adivarahan, G. Simin, J. W. Yang, A. Lunev, M. Asif Khan, N. pala, M. Shur, and R. Gasja, Appl. Phys. Lett., Vol. 77, 863 (2000)
    [12] O. Katz, G. Bahir, and J. Salzman, Appl. Phys. Lett., Vol. 84, 4092 (2004)
    [13] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, Appl. Phys. Lett., Vol. 79, 1417 (2001)
    [14] E. Monroy, T. Palacios, O. Hainaut, F. Omns, F. Calle, and J. F. Hochedez, Appl. Phys. Lett., Vol. 80, 3198 (2002)
    [15] M. Mosca, J. L. Reverchon, F. Omns, and J. Y. Duboz, Appl. Phys. Lett., Vol. 95, 4367 (2004)
    [16] Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J. Chang, and J. K. Sheu, Jpn. J. Appl. Phys., Vol. 40, 2996 (2001)
    [17] T. Palacios, E. Monroy, F. Calle, and F. Omns, Appl. Phys. Lett., Vol. 81, 1902 (2002)
    [18] J. Li, Y. Xu, T. Y. Hsiang, and W. R. Donaldson, Appl. Phys. Lett., Vol. 84, 2091 (2004)
    [19] J. L. Pau, C. Rivera, E. Muňoz, E. Calleja, U. Schhle, E. Frayssinet, B. Beaumont, J. P. Faurie, and P. Gibart, J. Appl. Phys., Vol. 95, 8275 (2004)
    [20] Y. Z. Chiou, J. R. Chiou, Y. K. Su, S. J. Chang, B. R. Huang, C. S. Chang, and Y. C. Lin, Mater. Chem, Phys., Vol. 80, 201 (2003)
    [21] C. K. Wang, S. J. Chang, Y. K. Su, C. S. Cahgn, Y. Z. Chiou, C. H. Kuo, T. K. Lin, T. K. Ko and J. J. Tang, Mater. Sci. Eng. B, Vol. 112, 25 (2004)
    [22] K. S. Stevens, M. Kinniburgh, and R. Beresford, Appl. Phys. Lett., Vol. 66, 3518 (1995)
    [23] A. Osinsky, S. Gangopadhyay, J. W. Yang, R. Gaska, D. Kuksenkov, H. Temkin, I. K. Shmagin, Y. C. Chang, J. F. Muth, and R. M. Kolbas, Appl. Phys. Lett., Vol. 72, 551 (1998)
    [24] 國立成功大學碩士論文,” The Study of TiW & W Transparent Electrodes and its Application in Nitride-Based Light Emitting Diodes and Photodetectors,” by Hsin-Liang Liu
    [25] Y. Z. Chiou, J. Electrochem. Soc., Vol. 152 (8), G639-642 (2005)
    [26] C. K. Wang, S. J. Chang, Y. K. Su, Y. Z. Chiou, S.C. Chen, C. S. Chang, T. K. Lin, H. L. Liu, and J. J. Tang, IEEE Trans. Electron. Dev., Vol. 53, 38 (2006)

    Chapter 4
    References
    [1] A. Osinsky, S. Gangopadhyay, J. W. Yang, R. Gaska, D. Kuksenkov, H. Temkin, I. K. Shmagin, Y. C. Chang, J. F. Muth, and R. M. Kolbas, Appl. Phys. Lett., Vol. 72, 551 (1998)
    [2] P. W. Deelman, R. N. Bicknell-Tassius, S. Nikishin, V. kuryatkov, and H. Temkin, Appl. Phys. Lett., Vol. 78, 2172 (2001)

    Chapter 5
    References
    [1] 國立成功大學博士論文,” efficiency of GaN based light emitting diodes improved by chip process technique and the growth of GaN based light emitting diodes on Si substrate,” by Yi-Chao Lin, 2005
    [2] S. Kaiser, M. Jakob, J. Zweck, W. Gebhardt O. Ambacher, R. Dimitrov, A. T. Schremer, J. A. Smart, and J. R. Shealy, J. Vac. Scien. Technol. B, Vol. 18, 733-740 (2000)
    [3] Z. Lao, V. Hurm, W. Bronner, A. Hulsmann, T. Jakobus, K. Kohler, M. Ludwig, B. Raynor, J. Rosenzweig, M. Schlechtweg, and A. Thiede, IEEE Photo. Tec. Lett., Vol. 10, 710 (1998)

    下載圖示 校內:2010-07-05公開
    校外:2012-07-05公開
    QR CODE