| 研究生: |
吳文傑 Wu, Wen-Jei |
|---|---|
| 論文名稱: |
高應變率拉伸環境系統建構及鋁合金材料機械行為之測定 High Strain-Rate Tensile Loading System’s Development and its Application to Aluminum Alloys |
| 指導教授: |
鄭泗滄
Jenq, Syh-Tsang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | SHTB 、動態應力應變關係 、應變率 、應力波 |
| 外文關鍵詞: | SHTB, dynamic stress-strain relationship, strain rate, stress wave |
| 相關次數: | 點閱:97 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主旨在發展拉伸式哈普金森桿(SHTB)之設計,並依此針對6061-T6與6061-O之鋁合金之試片,觀察其動態應力應變關係。首先使用SHIMAZDU AG-X量測在室溫下受到1.3×10-4s-1之應變率下,鋁試片的應力應變關係。除此之外,亦利用SHTB進行應變率在500 s-1 to 1200 s-1範圍內之動態測試。為了檢視與確認本次實驗的準確性與精準度,分別與參考文獻[4]與[8]所執行之6061-O與6061-T6之鋁合金應力應變曲線進行比對,在特定試片下所做出來的結果,其誤差在5.7%內。此外將實驗得到之應力應變曲線數據輸入至有限元素分析軟體內,試片的設定採用多線性塑性段材料組成定律,並檢視與比較模擬與實驗的結果,在鈦合金桿件上之穿透波與入射波的應力波大小。此外, 6061-T6與6061-O試片之應變率效應與所有完整的結果清楚地呈現在本論文研究中。
The main goal of this work is to design a material tester of Split Hopkinson Tension Bar (SHTB) to acquire the dynamic stress-strain relationships for the relative and relevant specimens that are composed of aluminum alloy 6061-T6 and 6061-O. SHIMAZDU AG-X is used to measure stress-strain relationships for Al specimens at a strain rate of 1.3×10-4s-1 at the room temperature. Besides, Split Hopkinson Tension Bar is also to perform the dynamic stress-strain property with strain rate ranging from 500s-1 to 1200 s-1. In order to check and ensure the adequacy and accuracy of our test, the specific stress-strain curves for 6061-O and 6061-T were compared with Ref (4) & (8), respectively. It shows the consistent and reasonable results for prescribed specimens and the deviation error of the test result is under 6.6%. Subsequently, we take the experimental stress-strain curve into the piecewise-plasticity constitute material model for Al specimen in commercial FEM code - LS-DYNA. Upon examining the simulation and experiment, it shows a good agreement for the transmission and incident waves on the elastic Ti-alloy bar. The strain rate effect is also observed for the specimens of 6061-T6 and 6061-O under high strain rate tension test at room temperature. All of the complete results are presented and reported clearly on this study.
1.T. Nicholas, "Tensile Testing of Materials at High Rates of Strain", Experimental Mechanics, 21, 177-185, 1981.
2.J. Harding, L. M. Welsh, "A Tensile Testing Technique for Fibre-Reinforced Composites at Impact Rates of Strain", Journal of Materials Science, 18, 1810-1826, 1983.
3.小栗富士雄、小栗達男, "標準機械設計圖表便覽", 臺隆書店, pp. 3b_24-3b_52, 2001.
4.S. T. Jenq, and S. L. Sheu, "An Experimental and Numerical Analysis for High Strain Rate Compressional Behavior of 6061-O Aluminum Alloy", Computers & Structures Vol. 52, No. 1, 27-34, 1994.
5.張桓琥, "多種錫鉛及無錫鉛材料之動態衝擊特性研究", 國立成功大學航空太空工程研究所碩士論文, 2007.
6.林仁傑, "無鉛銲錫材料在不同溫度下的動態衝及特性研究", 國立成功大學航空太空工程研究所碩士論文, 2008.
7.許樹林, "使用哈普金森桿量測複合材料在較高應變率時之動態衝壓特性" 國立成功大學航空太空工程研究所碩士論文, 1992.
8.Xin Tang, V. Prakash, and J. Lewandowski, "Dynamic Tensile Deformation of Aluminum Alloy 6061-T6 and 6061-OA", Proceedings of the 2006 SEM Annual Conference, 2006.
9.M. Li, R Wang, and M. B. Han, "A Kolsky Bar: Tension, Tension-tension", Experiment Mechanics, 33, 7-14, 1993.
10.G. H. Staab, A. Gilat, "A Direct-Tension Split Hopkinson Bar for Strain-Rate Testing", Experimental Mechanics, 31, 232-235, 1991.
11.T. Yokoyama, "Impact Tensile Stress-Strain Characteristics of Wrought Magnesium Alloys", Stain, 39, 167-175, 2003.
12.K. NAKAI, and T. Yokoyama, "Dynamic Tensile Properties of Nuclear-Grade Graphite IG-11", 6th International Symposium on Advanced Science and Technology in Experimental Mechanics, 2011.
13.W. Johnson, "Impact Strength of Materials", Edward Arnold, England, pp. 1-50, 1972.
14.Karl F. Graff, "Wave Motion in Elastic Solids", Dover Publications, INC, New York, pp. 75-139, 1975.
15.Marc A. Meyers, "Dynamic Behavior of Materials", Wiley Interscince Publication, New York, pp. 23-40, 1994.
16.Marc A. Meyers, "Dynamic Behavior of Materials", Wiley Interscince Publication, New York, pp. 296-310, 1994.
17.Kolsky H., “Stress Wave in Solids”, Dover Publications, New York, 1963.
18.F. P. Beer, E. R. Johnson Jr., J. T. Dewolf, D. F. Mazurek, "Mechanics of Materials", McGraw-Hill, New York, pp. 61-62, 2012.
19.Bo Song, B. R. Antoun, Kevin Connelly, John Korellid, Wei-Yang Lu, “A Newly Developed Kolsky Tension Bar, Dynamic Behavior of Materials”, SEM Annual Conference, Vol. 1, 447-448, 2011.
20.A. T. Owens, Development of a Split Hopkinson Tension Bar for Testing Stress-Strain Response of Particulate Composites under High Rate of Loading, Auburn University, 2007.
21.Weinong W. Chen, Bo Song, “Split Hopkinson (Kolsky) Bar - Design, Testing and Applications”, Springer, New York, pp. 261-289, 2011.
22."Standard Practice for Heat Treatment of Wrought Aluminum Alloys", ASTM B918/B918M-09, 2009.
23."Standard Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products (Metric)", ASTM B557M-10, 2010.
24.W. Chen, B. Song, D. J. Frew, and M. J. Forrestal, Dynamic Small Strain Measurements of a Metal Specimen with a Split Hopkinson Pressure Bar, Experimental Mechanics, Vol. 43, No. 1, pp. 20-23, 2003.
25.H. Huh, W. J. Kang, S. S. Han, A Tension Split Hopkinson Bar for Investigating the Dynamic Behavior of Sheet Metals, Experimental Mechanics, Vol. 42, No. 1, 08-17, 2002.
26.W. D. Callister, Jr., "Materials Science and Engineering- An Introduction", John Wiley & Sons, Inc., New York, pp. 387-401, 2007.
27.勢流科技股份有限公司, "結構分析軟體LS-DYNA技術講座Implicit/Explicit", pp. 38-40, 2006.