| 研究生: |
陳利洋 Chen, Li-Yang |
|---|---|
| 論文名稱: |
三-五族化合物半導體式高電子移動率場效電晶體之研究 Investigation of Ш-V Compound Semiconductor High Electron Mobility Field-Effect Transistors |
| 指導教授: |
劉文超
Liu, Wen-Chau 鄭岫盈 Cheng, Shiou-Ying |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 高電子移動率電晶體 、漸變式平面摻雜層 、無電鍍 、非退火式歐姆掘入 |
| 外文關鍵詞: | high electron mobility transistor, graded triple delta-doped sheets, electroless plated (EP), non-annealed Ohmic-recess (NAOR) |
| 相關次數: | 點閱:108 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們利用有機金屬化學汽相沈積法及分子束磊晶法研製三種以砷化鎵材料為基礎之高電子移動率場效電晶體。藉由新穎的結構設計、歐姆掘入製程及無電鍍沈積法,完整的探討其對元件特性之影響,包含直流、微波、熱穩定度及可靠度特性…等。實驗結果顯示,所研製的元件展現出良好的特性及高溫操作能力。而這些優點表示元件適合應用於高速、高頻率及高溫電子電路中。
首先,在磷化銦鎵/砷化銦鎵/砷化鎵擬晶性高電子移動率電晶體上,選擇磷化銦鎵材料作為蕭特基層及緩衝層、砷化銦鎵材料作為雙通道結構及設計漸變式三層平面摻雜作為載子提供層,使得元件具有良好的直流及高頻特性。此外,理論上的分析使用模擬軟體探討元件特性,並與實驗量測結果進行比較。從實驗上得知,模擬分析與實驗量測的結果相符合。
其次,以無電鍍沈積法研製一種砷化鋁鎵/砷化銦鎵/砷化鎵空乏型及增強型擬晶性高電子移動率電晶體。藉由低溫與低能量的沈積特性,可減少表面熱破壞及表面態位密度,以在鈀/砷化鋁鎵間形成良好的蕭特基接面。從實驗的結果發現,無電鍍元件顯示優良的直流特性。另外,亦探討不同溫度環境下無電鍍沈積法對元件特性所造成的影響。此外,無電鍍沈積法也具有以下優點,諸如低成本以及操作簡單。
最後,探討具有非退火式的歐姆掘入之砷化銦鋁/砷化銦鎵變晶性高電子移動率電晶體。利用一種歐姆掘入技術降低元件之寄生電阻,並可免除高溫熱退火製程改善因退火而造成元件的破壞。因此,具非退火式的歐姆掘入技術結構預期改善元件之寄生電阻、直流及微波等特性。此外,所研製元件可得到較佳的高溫操作能力及相對較佳的熱穩定度及可靠度。
In this dissertation, three different GaAs-based high electron mobility field-effect transistors, grown by a metal organic chemical vapor deposition (MOCVD) and a molecular beam epitaxy (MBE) system, are fabricated and studied. Through the newly designed structure, Ohmic-recess process, and electroless-plated deposition approach, the device characteristics including the DC, microwave, thermal stability, and reliability performance are investigated. Experimentally, the studied devices show good device characteristics and high temperature operation capability. These advantages suggest that the proposed devices are suitable for high-speed, high-frequency, and high-temperature electronics applications.
First, the temperature-dependent characteristics of InGaP/InGaAs/GaAa pseudomorphic high electron mobility transistor (PHEMT) are studied and demonstrated. Due to the employed InGaP Schottky and buffer layers, InGaAs double channel structure, and graded triple delta-doped sheets, both DC and microwave performance are improved. Moreover, a theoretical analysis based on a 2-D semiconductor simulation package is used to study the device properties and compare the experimental results. Good agreement between the theoretical analyses and experimental results are found.
Second, the characteristics of an AlGaAs/InGaAs/GaAs depletion-mode (D-mode) and enhancement-mode (E-mode) pseudomorphic high electron mobility transistors (PHEMTs) fabricated using an electroless plated (EP) deposition approach are studied and investigated. Based on the low-energy and low-temperature deposition conditions, the Pd/AlGaAs Schottky interface suffers less thermal damage and disordered-states. Experimentally, the EP-based device shows a significantly improved DC performance. In addition, the temperature influences of the studied devices, at the temperature regime of 300 to 500K, are studied. Moreover, the EP approach also has the advantages of easy operation and low cost.
Finally, the temperature-dependent characteristics of an InAlAs/InGaAs metamorphic high electron mobility transistor (MHEMT) with non-annealed Ohmic-recess (NAOR) approach are fabricated and systematically studied. The proposed NAOR approach could reduce the parasitic resistance caused by large conduction band discontinuity at InAlAs/InGaAs interface. The used NAOR approach shows benefits of the absence of thermal treatment (non-annealed) for Ohmic contact. Therefore, the improvement of device performance in terms of parasitic resistance and DC as well as microwave characteristics can be expected. Moreover, the relatively lower variations of device performance over wide temperature range (300 ~ 500 K) are obtained.
References
[1] K. H. Yu, K. W. Lin, C. C. Cheng, K. P. Lin, C. H. Yen, C. Z. Wu, and W. C. Liu, “InGaP/GaAs camel-like field-effect transistor for high-breakdown and high-temperature applications,” Electron. Lett., vol. 36, pp. 1886-1888, 2000.
[2] W. C. Liu, K. H. Yu, R. C. Liu, K. W. Lin, K. P. Lin, C. H. Yen, C. C. Cheng, and K. B. Thei, “Investigation of temperature-dependent characteristics of an n+-InGaAs/n-GaAs composite doped channel HFET,” IEEE Trans. Electron Devices, vol. 48, pp. 2677-2683, 2001.
[3] H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu, and W. C. Liu, “Investigation of a new InGaP-InGaAs pseudomorphic double doped-channel heterostructure field-effect transistor (PDDCHFET),” IEEE Trans. Electron Devices, vol. 50, pp. 1717-1723, 2003.
[4] J. H. Tsai, “A novel InGaP/InGaAs/GaAs double -doped pHEMT with camel-like gate structure,” IEEE Electron Device Lett., vol. 24, pp. 1-3, 2003.
[5] Y. S. Lin and Y. L. Hsieh, “Effect of temperature on novel InAlGaP/GaAs/InGaAs camel-gate pseudomorphic high-electron-mobility transistors,” J. Electrochem. Soc., vol. 153, pp. G498-G501, 2006.
[6] H. Wang, G. I. Ng, M. Gilbert, and P. J. O’Sullivan, “Suppression of I-V kink in doped channel InAlAs/InGaAs/InP heterojunction field-effect transistor (HFET) using silicon nitride passivation,” Electron. Lett., vol. 32, pp. 2026-2027, 1996.
[7] K. Hyungtak, R. M. Thompson, V. Tilak, T. R. Prunty, J. R. Shealy, and L. F. Eastman, “Effects of SiN passivation and high-electric field on AlGaN-GaN HFET degradation,” IEEE Electron Device Lett., vol. 24, pp. 421-423, 2003.
[8] M. K. Tsai, S. W. Tan, Y. W. Wu, Y. J. Yang, and W. S. Lour, “Improvements in direct-current characteristics of Al0.45Ga0.55As-GaAs digital-graded superlattice-emitter HBTs with reduced turn-on voltage by wet oxidation,” IEEE Trans. Electron Devices, vol. 50, pp. 303-309, 2003.
[9] K. W. Lin, K. H. Yu, W. L. Chang, C. C. Cheng, K. P. Lin, C. H. Yen, W. S. Lour, and W. C. Liu, “Characteristics and comparison of In0.49Ga0.51P/GaAs single and double delta-doped pseudomorphic high electron mobility transistors,” Solid-State Electron., vol. 45, pp. 309-314, 2001.
[10] W. C. Liu, W. L. Chang, W. S. Lour, K. H. Yu, K. W. Lin, C. C. Cheng, and S. Y. Cheng, “Temperature-dependence investigation of a high-performance inverted delta-doped V-shaped GaInP/InxGa1-xAs/GaAs pseudomorphic high electron mobility transistor,” IEEE Trans. Electron Devices, vol. 48, pp. 1290-1296, 2001.
[11] C. L. Wu, W. C. Hsu, H. M. Shieh, and M. S. Tsai, “An improved inverted δ-doped GaAs/InGaAs pseudomorphic heterostructure grown by MOCVD,” IEEE Electron Device Lett., vol. 15, pp. 330-332, 1994.
[12] Y. C. Lin, E. Y. Chang, G. J. Chen, H. M. Lee, G. W. Huang, D. Biswas and C. Y. Chang, “InGaP/InGaAs PHEMT with high IP3 for low noise applications,” Electron. Lett., vol. 40, pp. 777-778, 2004.
[13] Y. S. Lin and B. Y. Chen, “Performance of AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor as a function of temperature,” J. Electrochem. Soc., vol. 154, pp. H406-H411, 2007.
[14] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, 2nd ed. New York: Oxford Science Publications, 1988.
[15] H. Hasegawa, “Fermi level pinning and Schottky barrier height control at metal-semiconductor interfaces of InP and related materials,” Jpn. J. Appl. Phys., vol. 38, pp.1098-1102, 1999.
[16] P. H. Lai, R. C. Liu, S. I. Fu, Y. Y. Tsai, C. W. Hung, T. P. Chen, C. W. Chen, and W. C. Liu, “Comprehensive study of thermal stability performance of metamorphic heterostructure field-effect transistors with Ti/Au and Au metal gates,” J. Electrochem. Soc., vol. 154, pp. H205-H209, 2007.
[17] H. Hasegawa and H. Ohno, “Unified disorder induced gap state model for insulator-semiconductor and metal-semiconductor interfaces,” J. Vac. Sci. & Technol. B, vol. 4, pp. 1130-1138, 1986.
[18] H. I. Chen, C. K. Hsiung, and Y. I. Chou, “Characterization of Pd-GaAs Schottky diodes prepared by the electroless plating technique,” Semicond. Sci. Technol., vol. 18, pp.620-626, 2003.
[19] J. S. Su, W. C. Hsu, D. T. Lin, W. Lin, H. P. Shaio, Y. S. Lin, J. Z. Huang, and P. J. Chou, “High-breakdown voltage Al0.66In0.34As0.85Sb0.15/In0.75Ga0.25As/InP heterostructure field-effect transistors,” Electron. Lett., vol. 32, pp. 2095-2097, 1996.
[20] Y. S. Lin and J. H. Huang, “Mobility Enhancement and Breakdown Behavior in InP-Based Heterostructure Field-effect Transistor,” J. Electrochem. Soc., vol. 152, pp. G627-G629, 2005.
[21] P. H. Lai, S. I. Fu, C. W. Hung, Y. Y. Tsai, T. P. Chen, C. W. Chen, and W. C. Liu, “Temperature effect on impact ionization characteristics in metamorphic high electron mobility transistors,” Appl. Phys. Lett., vol. 89, pp. 263503-1-263503-3, 2006.
[22] P. H. Lai, S. I. Fu, C. W. Hung, Y. Y. Tsai, T. P. Chen, C. W. Chen, Y. W. Huang, and W. C. Liu, “On the temperature-dependent characteristics of metamorphic heterostructure field-effect transistors with different Schottky gate metals,” Semicond. Sci. Technol., vol. 22, pp. 475-480, 2007.
[23] C. S. Whelan, P. F. Marsh, W. E. Woke, R. A. McTaggart, P. S. Lyman, P. J. Lemonias, S. M. Lardizabal, R.E. Leoni III, S. J. Lichwala, and T. E. Kazior, “Millimeter-wave low-noise and high-power metamorphic HEMT amplifiers and devices on GaAs substrate,” IEEE J. Solid-State Circuits, vol. 35, pp. 1307-1311, 2000.
[24] C. K. Lin, W. K. Wang, Y. J. Chan, and H. K. Chiou, “BCB-bridged distributed wideband SPST switch using 0.25-μm In0.5Al0.5As-In0.5Ga0.5As metamorphic HEMTs,” IEEE Trans. Electron Devices, vol. 52, pp. 1-5, 2005.
[25] Y. J. Chan and M. T. Yang, “Device linearity improvement by Al0.3Ga0.7As/In0.2Ga0.8As heterostructure doped-channel FET’s,” IEEE Electron Device Lett., vol. 16, pp. 33-35, 1995.
[26] K. H. Yu, H. M. Chuang, K. W. Lin, S. Y. Cheng, C. C. Cheng, J. Y. Chen, and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP-InGaAs-GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT),” IEEE Trans. Electron Devices, vol. 49, pp. 1687-1693, 2002.
[27] A. A. Iliadis, J. K. Zahurak, T. Neal, and W. T. Masselink, “Lateral diffusion effects in AuGe based source-drain contacts to AlInAs/InGaAs/InP doped channel MODFETs,” J. Electron. Mater., vol. 28, pp. 944-948, 1999.
[28] S. Kraus, H. Heiss, D. Xu, M. Sexl, G. Bohm, G. Trankle, and G. Weimann, “InGaAs/InAlAs HEMTs with extremely low source and drain resistances,” Electron. Lett., vol. 32, pp. 1619-1621, 1996.
[29] J. B. Shealy, M. Matloubian, T. Y. Liu, M. A. Thompson, M. M. Hashemi, S. P. Denbaars, and U. K. Mishra, “High-performance submicrometer gatelength GaInAs/InP composite channel HEMT’s with regrown ohmic contacts,” IEEE Electron Device Lett., vol. 17, pp. 540-542, 1996.
[30] W. S. Lour, M. K. Tsai, K. C. Chen, Y. W. Wu, S. W. Tan, and Y. J. Yang, “Dual-gate In0.5Ga0.5P/In0.2Ga0.8As pseudomorphic high electron mobility transistors with high linearity and variable gate-voltage swing,” Semicond. Sci. Technol., vol. 16, pp. 826-830, 2001.
[31] Y. J. Li, W. C. Hsu, and S. Y. Wang, “Temperature-dependent characteristics of an Al0.2Ga0.8As/In(0.22)Ga(0.78)As pseudomorphic double heterojunction modulation doped field-effect transistor with a GaAs/AlGaAs superlattice buffer layer,” J. Vac. Sci. Technol. B, vol. 21, pp. 760-762, 2003.
[32] J. H. Tsai, T. Y. Weng, and C. M. Li, “Integration of enhancement/depletion-mode InGaP/InGaAs doped-channel pseudomorphic HFETs for direct-coupled FET logic application,” Semicond. Sci. Technol., vol. 23, pp. 075018, 2008.
[33] Y. S. Lin and Y. L. Hsieh, “Temperature-dependent characteristics of InGaP/InGaAs/GaAs high-electron mobility transistor measured between 77 and 470 K,” J. Electrochem. Soc., vol. 152, pp.G778-G780, 2005.
[34] S. E. Rosenbaum, B. K. Kormanyos, L. M. Jelloian, M. Matloublian, A. S. Brown, L. E. Larson L. D. Nguyen, M. A. Thompson, L. P. B. Katehi, and G. M. Rebeiz, “155-GHz and 213-GHz AlInAs/GaInAs/InP HEMT MMIC oscillators,” IEEE Microw. Theory Tech., vol. 43, pp. 927-932, 1995.
[35] H. Takenaka and D. Ueda, “0.15 μm T-shaped gate fabrication for GaAs MODFET using phase shift lithography,” IEEE Trans. Electron Devices, vol. 43, pp. 238-244, 1996.
[36] B. Pereiaslavets, K. H. Bachem, J. Braunstein, and L. F. Eastman, “GaInP/InGaAs/GaAs graded barrier MODFET grown by OMVPE: design, fabrication, and device results,” IEEE Trans. Electron Devices, vol. 43, pp. 1659-1664, 1996.
[37] Y. S. Lin and S. S. Lu, “High-breakdown-voltage Ga0.51In0.49P channel MESFET’s grown by GSMBE,” IEEE Electron Device Lett., vol. 17, pp. 452-454, 1996.
[38] J. C. Liou and K. M. Lau, “Temperature dependence and persistent conductivity of GaAs MESFETs with superlattice buffers,” IEEE Trans. Electron Devices, vol. 35, pp. 14-17, 1988.
[39] H. Wong, C. Liang, and N. W. Cheung, “On the temperature variation of threshold voltage of GaAs MESFET’s,” IEEE Trans. Electron Devices, vol. 39, pp. 1571-1577, 1992.
[40] R. E. Anholt and S. E. Swirhun, “Experimental investigation of the temperature dependence of GaAs FET equivalent circuit,” IEEE Trans. Electron Devices, vol. 39, pp. 2029-2036, 1992.
[41] S. W. Tan, W. T. Chen, M. Y. Chu, and W. S. Lour, “Sub-0.5-μm gate doped-channel field-effect transistors with HEMT-like channel using thermally reflowed photoresist and spin-on glass,” Semicond. Sci. Technol., vol. 19, pp. 167-171, 2004.
[42] S. I. Fu, R. C. Liu, S. Y. Cheng, P. H. Lai, Y. Y. Tsai, C. W. Hung, T. P. Chen, and W. C. Liu, “Comprehensive investigation on emitter ledge length of InGaP/GaAs heterojunction bipolar transistors,” J. Vac. Sci. & Technol. B, vol. 25, pp. 691-696, 2007.
[43] S. Y. Cheng, K. Y. Chu, L. Y. Chen, L. A. Chen, and C. Y. Chen, “Two-dimensional analysis for emitter ledge thickness of InGaP/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 90, pp. 0435101-0435103, 2007.
[44] W. C. Liu, W. L. Chang, W. S. Lour, S. Y. Cheng, Y. H. Shie, J. Y. Chen, W. C. Wang, and S. J. Pan, “Temperature-dependent investigation of a high-breakdown voltage and low-leakage current Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic HEMT,” IEEE Electron Device Lett., vol. 20, pp. 274-276, 1999.
[45] H. R. Chen, M. K. Hsu, S. Y. Chiu, W. T. Chen, G. H. Chen, Y. C. Chang, C. C. Su, and W. S. Lour, “Performance of Al0.24Ga0.76As/In0.22Ga0.78As double-heterojunction HEMTs with an as deposited and buried gate,” Semicond. Sci. Technol., vol. 22, pp. 119-124, 2007.
[46] P. H. Lai, C. W. Chen, C. I. Kao, S. I. Fu, Y. Y. Tsai, C. W. Hung, C. H. Yen, H. M. Chuang, S. Y. Cheng, and W. C. Liu, “Influences of sulfur passivation on temperature-dependent characteristics of an AlGaAs/InGaAs/GaAs PHEMT,” IEEE Trans. Electron Devices, vol. 53, pp. 1-8, 2006.
[47] S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd ed. New York: Wiley, 1985, pp. 237-251.
[48] Y. S. Lin, S. S. Lu, and Y. J. Wang, “High-performance Ga0.51In0.49P/GaAs airbridge gate MISFET's grown by gas-source MBE,” IEEE Trans. Electron Devices, vol. 44, pp. 921-929, 1997.
[49] C. Gaquiere, J. Grunenputt, D. Jambon, E. Delos, D. Ducatteau, M. Werquin, D. Theron, and P. Fellon, “A high-power W-band pseudomorphic InGaAs channel PHEMT,” IEEE Electron Device Lett., vol. 26, pp.533-534, 2005.
[50] X. B. Mei, W. Yoshida, W. R. Deal, P. H. Liu, J. Lee, J. Uyeda, L. Dang, J. Wang, W. Liu, D. Li, M. Barsky, Y. M. Kim, M. Lange, T. P. Chin, V. Radisic, T. Gaier, A. Fung, L. Samoska, and R. Lai “35-nm InP HEMT SMMIC amplifier with 4.4-dB gain at 308 GHz,” IEEE Electron Device Lett., vol. 28, pp.470-472, 2007.
[51] J. C. Huang, W. C. Hsu, C. S. Lee, W. C. Chang, and D. H. Huang, “Improved high-temperature characteristics of a symmetrically graded AlGaAs/InxGa1-xAs/AlGaAs pHEMT,” Semicond. Sci. Technol., vol. 21, pp. 1675-1680, 2006.
[52] Y. S. Lin, B. Y. Chen, and C. H. Ho, “Comprehensive characterization of AlGaAs/InGaAs/GaAs composite-channel high-electron mobility transistor,” J. Electrochem. Soc., vol. 154, pp. H951-H956, 2007.
[53] C. W. Hung, K. W. Lin, R. C. Liu, Y. Y. Tsai, P. H. Lai, S. I. Fu, T. P. Chen, H. I. Chen, and W. C. Liu, “On the hydrogen sensing properties of a Pd/GaAs transistor-type gas sensor in a nitrogen ambiance,” Sens. Actuators B, vol. 125, pp. 22-29, 2007.
[54] H. I. Chen and Y. I. Chou, “A comparative study of hydrogen sensing performances between electroless plated and thermal evaporated Pd/InP Schottky diodes,” Semicond. Sci. Technol., vol. 18, pp. 104-110, 2003.
[55] H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Actuators B, vol. 85, pp.10-18, 2002.
[56] H. I. Chen, Y. I. Chou, and C. K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd-InP Schottky diode,” Sens. Actuators B, vol. 92, pp.6-16, 2003.
[57] D. M. Lin, C. K. Lin, F. H. Huang, J. S. Wu, W. K. Wang, Y. Y. Tsai, Y. J. Chan, and Y. C. Wang, “Dual-gate E/E- and E/D-mode AlGaAs/InGaAs pHEMTs for microwave circuit applications,” IEEE Trans. Electron Devices, vol. 54, pp. 1818-1824, 2007.
[58] J. C. Huang, W. C. Hsu, C. S. Lee, D. H. Huang, and M. F. Huang, “Temperature-dependent characteristics of enhancement-/depletion-mode double δ-doped AlGaAs/InGaAs pHEMTs and their monolithic DCFL integrations,” Solid-State Electron, vol. 51, pp.882-887, 2007.
[59] H. R. Chen, M. K. Hsu, S. Y. Chiu, W. T. Chen, D. F. Guo, and W. S. Lour, “Characterization of a self-built field-plate gate on InGaP/InGaAs heterojunction doped-channel field-effect transistors,” Semicond. Sci. Technol., vol. 221, pp. 263-269, 2007.
[60] Y. J. Li, W. C. Hsu, Y. W. Chen, and H. M. Shieh, “Depletion- and enhancement-mode In0.49Ga0.51P/InGaAs/AlGaAs high-electron-mobility transistors with high-breakdown voltage,” J. Vac. Sci. Technol. B, vol. 21, pp.981-983, 2003.
[61] M. K. Tsai, S. W. Tan, Y. W. Wu, W. S. Lour, and Y. J. Yang, “Depletion-mode and enhancement-mode InGaP/GaAs δ-HEMTs for low supply-voltage applications,” Semicond. Sci. Technol., vol. 17, pp.156-160, 2002.
[62] H. C. Chiu, C. S. Cheng, and Y. J. Shih, “High uniformity (Al0.3Ga0.7)0.5In0.5P/InGaAs enhancement-mode pseudomorphic HEMTs by selective succinic acid gate recess,” Electrochem. Solid-State Lett., vol. 9, pp. G59-G61, 2006.
[63] K. F. Yarn and C. I. Liao, “Enhanced characteristics in gate-recessed and sidewall-recessed AlGaAs/InGaAs PHEMTs by citric-based selective wet etching,” Int. J. Electron., vol. 93, pp. 67-80, 2006.
[64] G. O. Mallory and J. B. Hajdu, Electroless Plating: Fundamentals and Applications, Orlando: American Electroplaters and Surface Finisher Society, 1990.
[65] H. C. Chiu, M. J. Hwu, S. C. Yang, and Y. J. Chan, “Enhanced power performance of enhancement-mode Al0.5Ga0.5As/In0.15Ga0.85As pHEMTs using a low-k BCB passivation,” IEEE, Electron Device Letters, vol. 23, pp. 243-245, 2002.
[66] H. C. Chiu, Y. C. Huang, C. W. Chen, and L. B. Chang, “Electrical characteristics of passivated pseudomorphic HEMTs with P2S5/(NH4)2Sx pretreatment,” IEEE Trans. Electron Device., vol. 55, 721-726, 2008.
[67] E. F. Kaelble, “Handbook of X-rays,” New York: McGraw-Hill, 1967.
[68] P. H. Lai, S. I. Fu, Y. Y. Tsai, C. W. Hung, C. H. Yen, H. M. Chuang, and W. C. Liu, “Improved temperature-dependent characteristics of a sulfur-passivated AlGaAs/InGaAs/GaAs pseudomorphic high-electron-mobility transistor,” J. Electrochem. Soc., vol. 153, pp. G632-G635, 2006.
[69] L. Y. Chen, H. I. Chen, S. Y. Cheng, T. P. Chen, T. H. Tsai, Y. J. Liu, Y. W. Huang, C. C. Huang, and W. C. Liu, “On the pseudomorphic high electron mobility transistors (PHEMTs) with a low-temperature gate approach,” IEEE Electron Device Lett., vol. 30, pp. 325-327, 2009.
[70] S. Nuttinck, E. Gebara, J. Laskar, and H. M. Harris, “Study of self-heating effects, temperature-dependent modeling, and pulsed load-pull measurements on GaN HEMTs,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 2413-2420, 2001.
[71] Y. S. Lin and B. Y. Chen, “Comprehensive characterization of In0.45Al0.55As/In0.5Ga0.5As/InxAl1-xAs metamorphic high-electron-mobility transistors on GaAs substrates,” J. Electrochem. Soc., vol. 153, pp. G1005-G1010, 2006.
[72] A. Caddemi, G. Crupi, and N. Donato, “Temperature effects on DC and small signal RF performance of AlGaAs/GaAs HEMTs,” Microelectron. Reliab., vol. 46, pp. 169-173, 2006.
[73] F. Gao, “High reliability in PHEMT MMICs with dual-etch-stop AlAs layers for high-speed RF switch applications,” Microelectron. Reliab., vol. 43, pp. 829-837, 2003.
[74] G. Meneghesso, A. Chini, and E. Zanoni, “Long term stability of InGaAs/AlInAs/GaAs methamorphic HEMTs,” Microelectron. Reliab., vol. 41, pp. 1579-1584, 2001.
[75] P. F. Marsh, C. S. Whelan, W. E. Hoke, R. E. Leoni III, and T. E. Kazior, “Reliability of metamorphic HEMTs on GaAs substrates,” Microelectron. Reliab., vol. 42, pp. 997-1002, 2002.
[76] M. Dammann, F. Benkhelifa, M. Meng, and W. Jantz, “Reliability of metamorphic HEMTs for power applications,” Microelectron. Reliab., vol. 42, pp. 1569-1573, 2002.
[77] W. E. Hoke, T. D. Kennedy, A. Torabi, C. S. Whelan, R. F. Marsh, R. E. Leoni, S. M. Lardizabal, Y. Zhang, J. H. Jang, I. Adesida, C. Xu, and K. C. Hsieh, “Properties of metamorphic materials and device structures on GaAs substrates,” J. Crystal Groth, vol. 251, pp. 804-810, 2003.
[78] M. Dammann, A. Leuther, A. Tessmann, H. Massler, M. Mikulla, and G. Weimann, “Reliability of 50 nm low-noise metamorphic HEMTs and LNAs,” Electron. Lett., vol. 41, pp. 699-701, 2005.
[79] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, Y. S. Lin, and C. L. Wu, “High-temperature thermal stability performance in δ-doped In0.425Al0.575As-In0.65Ga0.35As metamorphic HEMT,” IEEE Electron Device Letts., vol. 26, pp. 59-61, 2005.
[80] D. H. Huang, W. C. Hsu, Y. S. Lin, J. H. Yeh, and J. C. Huang, “A metamorphic heterostructure field-effect transistor with a double delta-doped channel,” Semicond. Sci. Technol., vol. 22, pp. 784-787, 2007.
[81] J. C. Huang, W. C. Hsu, C. S. Lee, D. H. Huang, and M. F. Huang, “Characteristics of δ-doped InAlAs/InGaAs/InP high electron mobility transistors with a linearly graded InxGa1-xAs channel,” Semicond. Sci. Technol., vol. 21, pp. 619-625, 2006.
[82] D. H. Huang, W. C. Hsu, Y. S. Lin, Y. H. Wu, R. T. Hsu, J. C. Huang, and Y. K. Liao, “Comparative study of In0.52Al0.48As/InxGa1-xAs/InP high-electron-mobility transistors with a symmetrically graded and an inversely graded channel,” Semicond. Sci. Technol., vol. 21, pp. 781-785, 2006.
[83] C. W. Chen, P. H. Lai, W. S. Lour, D. F. Guo, J. H. Tsai, and W. C. Liu, “Temperature dependences of an In0.46Ga0.54As/In0.42Al0.58As based metamorphic high electron mobility transistor (MHEMT),” Semicond. Sci. Technol., vol. 21, pp. 1358-1363, 2006.
[84] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, J. C. Huang, D. H. Huang, K. H. Su, Y. S. Lin, and C. L. Wu, “Characteristics of In0.425Al0.575As-InxGa1-xAs metamorphic HEMTs with pseudomorphic and symmetrically graded channels,” IEEE Trans. Electron Devices, vol. 52, pp. 1079-1086, 2005.
[85] D. J. LaCombe, W. W. Hu, and F. R. Bardsley, “Reliability of 0.1 μm InP HEMTs”, IEEE/IRPS, pp.364-371, 1993.
[86] F. T. Chien, J. M. Yin, H. C. Chiu, and Y. J. Chan, “Device performance improvement of InGaP/InGaAs doped-channel FETs,” IEEE, Electron Device Letters, vol. 26, pp. 861-863, 2005.
[87] W. S. Lour and C. Y. Lia, “Comparisons between mesa- and airbridge-gate AlGaAs/InGaAs doped-channel field-effect transistors,” Semicond. Sci. Technol., vol. 13, pp. 796-800, 1998.
[88] I. Watanabe, K. Shinohara, T. Kitada, S. Shimomura, A. Endoh, Y. Yamashita, T. Mimura, S. Hiyamizu, and T. Matsui, “Thermal stability of Ti/Pt/Au ohmic contacts for cryogenically cooled InP-based HEMTs on (411)A-oriented substrates by MBE,” J. Crystal Growth, vol. 301, pp. 1025-1029, 2007.
[89] M. M. Hashemi, F. E. Najjar, B. Mc dermott, J. S. Hills, L. Maynard, U. K. Mishra, J. R. Hauser, and S. M. Bedair, “Novel fully self-aligned MESFET using source and drain regrown nonalloyed contacts by ALE,” J. Electron. Mater., vol. 22, pp. 179-183, 1993.
[90] J. B. Shealy, M. M. Hashemi, K. Kiziloglu, S. P. DenBaars, U. K. Mishra, T. K. Liu, J. J. Brown, and M. Lui, “High-breakdown-voltage AlInAs/GaInAs junction-modulated HEMT’s (JHEMT’s) with regrown ohmic contacts by MOCVD,” IEEE, Electron Device Letters, vol. 14, pp. 545-547, 1993.
[91] J. B. Shealy and U. K. Mishra, “0.2μm gate length, non-alloyed P+-AlInAs/N-AlInAs/GaInAs JHEMTs with ft = 62GHz,” Electron. Lett., vol. 32, pp. 2180-2181, 1996.
[92] H. C. Chien, F. T. Chien, S. C. Yang, C. W. Kuo, and Y. J. Chan, “Reducing source and drain resistances in InGaP/InGaAs doped-channel HFETs using δ-doping Schottky layer,” Electron. Lett., vol. 36, pp. 1320-1322, 2000.
[93] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New York: Wiley, 1990, pp. 341.
[94] E. J. Meijer, G. H. Gelinck, E. van Veenendaal, B. H. Huisman, D. M. de Leeuw, and T. M. Klapwijk, “Scaling behavior and parasitic series resistance in disordered organic field-effect transistors,” Appl. Phys. Lett., vol. 82, pp. 4576-4578, 2003.
[95] T. Akazaki, H. Takayanagi, J. Nitta, and T. Enoki, “InAs-inserted-channel InAlAs/InGaAs inverted HEMTs with direct ohmic contacts,” Physical E, vol. 2, pp.458-463, 1998.
[96] K. Higuchi, H. Matsumoto, T. Mishima, and T. Nakamura, “Optimum design and fabrication of InAlAs/InGaAs HEMT’s on GaAs with both high breakdown voltage and high maximum frequency of oscillation,” IEEE Trans. Electron Device., vol. 46, pp. 1312-1318, 1999.
[97] M. Boudrissa, E. Delos, Y. Cordier, D. Theron, and J. C. De Jaeger, “Enhancement mode metamorphic Al0.67In0.33As/Ga0.66In0.34As HEMT on GaAs substrate with high breakdown voltage,” IEEE, Electron Device Letters, vol. 21, pp. 512-514, 2000.
[98] D. H. Huang, W. C. Hsu, Y. S. Lin, J. C. Huang, and C. L. Wu, “Strain-relaxed In0.1Al0.25Ga0.65As/In0.22Ga0.78As/In0.1Al0.25Ga0.65As HEMT,” J. Electrochem. Soc., vol. 153, pp. G826-G829, 2006.
[99] A. Wakita, H. Rohdin, V. Robbins, N. Moll, and C. Y. Su, “Low-noise bias reliability of AlInAs/GaInAs modulation-doped field effect transistors with linearly graded low-temperature buffer layers grown on GaAs substrates,” Jpn. J. Appl. Phys., vol. 38, pp. 1186-1189, 1999.
[100] M. Dammann, A. Leuther, R. Quay, and M. Meng, “Reliability of 70 nm metamorphic HEMTs,” Microelectron. Reliab., vol. 44, pp. 939-943, 2004.
校內:2015-07-22公開