| 研究生: |
蔡俊彥 TSAI, CHUN-YEN |
|---|---|
| 論文名稱: |
雷射掃描技術用於結構物的變形監測之研究 Study of Structural Deformation Measurement Using Digital LIDAR |
| 指導教授: |
朱聖浩
Ju, Shen-Haw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 監測 、變形測量 、光達 、數位影像關係法 、LVDT 、位移感測器 、反射強度 、RGB |
| 外文關鍵詞: | monitor, deformation measurement, LIDAR, image correlation, LVDT, displacement sensor, intensity, RGB |
| 相關次數: | 點閱:112 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
結構物的安全和維護一直是一個很重要的課題,而現地實驗用於結構物的監測,其重要性不可小覷。近年來,雷射掃描技術-數位光達(digital LIDAR)是一種創新的監測儀器用來量測結構物的變形。然而,數位光達也有其缺點,最嚴重的缺點就是即使同個地點量測,量測出來的結果中,點雲資料(point cloud data)是不均勻的,而且其位置在每次量測有著± 6毫米的誤差。而在本文,我們透過數值方法來減少光達的缺點造成之誤差,包括拉格朗日有限元素內插法和數位影像關係法,藉著三維點雲坐標建構電腦模型來估算結構變形。
為了測試光達的反射強度和三原色RGB資料來做影像相關處理,我們做了實驗來比較光達掃描影像處理後得到的位移和線性可差分變壓器(LVDT)量測到的位移的精度。在影像處理前,必須透過兩個程式包括內插程式LIDAR01與數位影像關係程式CCD82,將點雲資料重新編排調整,經由變形前後的影像處理來計算出結構物位移。在本文末,我們發現以反射強度來做影像處理,能良好地分析結構物變形,尤其是結構物上有著明顯對比的影像圖案。
Since the safety and serviceability of structures are always an important issue, the examination of structures using field experiments has been emphasized. Digital LIDAR (Light Detection and Ranging) is an innovated instrument to measure the structural deformation. However, there are shortcomings of the digital LIDAR, and the most serious one is the non-uniform density of point cloud data, which are generated randomly with position accuracy ±6mm. In this thesis, we use numerical methods including the Lagrange interpolation and the digital image correlation to decrease the errors and present a computational model to estimate the deformed shapes of structures using the 3D coordinate information.
To use the intensity and RGB data of LIDAR for the image correlation, the displacement accuracy of LIDAR image analysis can be obtained from the experiment testing by comparing the displacement obtained from an LVDT. In order to analyze structural deformation by LIDAR, the point cloud data are re-arranged by two post-processing programs including the interpolation program LIDAR01 and the image correlation program CCD82. Displacements, then, can be calculated automatically by finding the image correlation subsets before and after deformation. The numerical results are good by the intensity analysis to measure the structural deformation with obvious random patterns in the structure.
REFERENCES
[1] Bretar F., Pierrot-Deseilligny M., and Roux M., Solving the strip adjustment problem of 3D airborne LIDAR data, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing (IEEE Cat. No.04CH37612), Volume 7, pages 4734-7, (2004).
[2] Casini G., Gillespie P.A., Verges J., Romaire I., Fernandez N., Casciello E., Saura E., Mehl C., Homke S., and Embry J.C., Sub-seismic fractures in foreland fold and thrust belts: insight from the Lurestan Province, Zagros Mountains, Iran, Petroleum Geoscience, Volume 17, Issue 3, pages 263-282, (2011).
[3] Chang K.J., Taboada A., and Chan Y.C., Geological and morphological study of the Jiufengershan landslide triggered by the Chi-Chi Taiwan earthquake, Geomorphology, Volume 71, Issue 3-4, pages 293-309, (2005).
[4] Cofaru C., Philips W., and Van P.W., A three-frame digital image correlation (DIC) method for the measurement of small displacements and strains, Measurement Science & Technology, Volume 23, Issue 10, (2012).
[5] Dubayah R.O., Sheldon S.L., Clark D.B., Hofton M.A., Blair J.B., Hurtt G.C., and Chazdon R.L., Estimation of tropical forest height and biomass dynamics using LIDAR remote sensing at La Selva, Costa Rica, Journal of Geophysical Research-Biogeosciences, Volume 115, (2010).
[6] Gordon S.J., and Lichti D.D., Modeling terrestrial laser scanner data for precise structural deformation measurement, Journal of Surveying Engineering-ASCE, Volume 133, Issue 2, pages 72-80, (2007).
[7] Kondo H., Toda S., Okumura K., Takada K., and Chiba T., A fault scarp in an urban area identified by LiDAR survey: a case study on the Itoigawa-Shizuoka Tectonic Line, central Japan, Geomorphology, Volume 101, Issue 4, pages 731-739, (2008).
[8] Lee H.M., and Park H.S., Estimation of deformed shapes of beam structures using 3D coordinate information from terrestrial laser scanning, CMES-Computer Modeling in Engineering & Sciences, Volume 29, Issue 1, pages 29-44, (2008).
[9] Lu H., and Cary P.D., Deformation measurements by digital image correlation: implementation of a second-order displacement gradient, Experimental Mechanics, Volume 40, Issue 4, pages 393-400, (2000).
[10] Maas H.G., Methods for measuring height and planimetry discrepancies in airborne laser scanner data, Photogrammetric Engineering and Remote Sensing, Volume 68, Issue 9, pages 933–940, (2002).
[11] McCormick N., and Lord J., Digital image correlation for structural measurements, Proceedings of the Institution of Civil Engineers-Civil Engineering, Volume 165, Issue 4, pages 185-190, (2012).
[12] McKean J., and Roering J., Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry, Geomorphology, Volume 57, Issue 3-4, pages 331-351, (2004).
[13] Nuttens T., Stal C., De Backer H., Schotte K., Van Bogaert P., Detry P., and De Wulf A., Terrestrial laser scanning as a key element in the integrated monitoring of tidal influences on a twin-tube concrete tunnel, Photogrammetric Record, Volume 29, Issue 148, pages 402-416, (2014).
[14] Pan B., Qian K.M., Xie H.M., and Asundi A., Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review, Measurement Science & Technology, Volume 40, Issue 6, (2009).
[15] Pan L.L., Konopka P., and Browell E.V., Observations and model simulations of mixing near the extratropical tropopause, Journal of Geophysical Research-Atmospheres, Volume 111, Issue D5, (2006).
[16] Peters W.H., Ranson W.F., Sutton M.A., Chu T.C., and Anderson J., Application of digital correlation methods to rigid body mechanics. Optical Engineering, Volume 22, Issue 6, pages 738-742, (1983).
[17] Ravetta F., Ancellet G., Kowol-Santen J., Wilson R., and Nedeljkovic D., Ozone, temperature, and wind field measurements in a tropopause fold: comparison with a mesoscale model simulation, Monthly Weather Review, Volume 127, Issue 11, pages 2641-2653, (1999).
[18] Sun G.Q., Ranson K.J., Guo Z., Zhang Z., Montesano P., and Kimes D., Forest biomass mapping from LIDAR and radar synergies, Remote Sensing of Environment, Volume 115, Issue 11, pages 2906-2916, (2011).
[19] Vendroux G., and Knauss W.G., Submicron deformation field measurements: Part 2. Improved digital image correlation, Experimental Mechanics, Volume 38, Issue 2, pages 86-92, (1998).
[20] Wang M., Hu X.F., and Wu X.P., Digital image correlation method for the analysis of 3-D internal displacement field in object, Acta Physica Sinica, Volume 55, Issue 10, pages 5135-5139, (2006).
[21] Winkler J., Fischer G., and Georgakis C.T., Measurement of local deformations in steel monostrands using digital image correlation, Journal of Bridge Engineering, Volume 19, Issue 10, (2014).
[22] Zahm Christopher K., and Hennings Peter H., Complex fracture development related to stratigraphic architecture: challenges for structural deformation prediction, Tensleep Sandstone at the Alcova anticline, Wyoming, AAPG Bulletin, Volume 93, Issue 11, pages 1427-1446, (2009).
[23] Zhiguo L., Neng H., Zemin F., and Haili L., The study of non-contact measure method for deformation based on the digital Image correlation, Advanced Materials Research, Volume 718-720, pages 853-857, (2013).
[24] 朱聖浩,「結構實驗」,國立成功大學土木工程研究所,結構實驗課程講義(2002)。
[25] 呂至中,「不同內插函數應用於數位影像相關法之準確度研究」,國立成功大學土木工程研究所,碩士論文(2010)。
[26] 邱建智,「監測自動化系統C程式之建立」,國立成功大學土木工程研究所,碩士論文(2012)。
[27] 張漢羽,「線性可差分變壓器用於自動化監測系統之研究」,國立成功大學土木工程研究所,碩士論文(2014)。
[28] 黃政鈞,「使用位移場計算含裂縫平版之應力強度因子」,國立成功大學土木工程研究所,碩士論文(2014)。
[29] 趙伯彰,「複合材料與壓電材料之缺角應力分析」,國立成功大學土木工程研究所,碩士論文(2009)。