簡易檢索 / 詳目顯示

研究生: 蕭如妏
Hsiao, Ju-Wen
論文名稱: 固態高分子電解質型丙酮氣體感測器於臨床生醫應用
Solid Polymer Electrolyte-based Acetone Gas Sensor for Clinical Applications
指導教授: 周澤川
Chou, Tse-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 122
中文關鍵詞: 呼氣分析高分子電解質丙酮感測器
外文關鍵詞: breath analysis, polymer electrolyte, sensor, acetone
相關次數: 點閱:103下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鑑定呼氣成分中的指標性氣體可以明白人體新陳代謝的疾病與代謝狀況。糖尿病為現代人所困擾的疾病,此類患者呼氣成分中的丙酮濃度會高於健康者,因此可將丙酮視為糖尿病診斷的指標。本研究發展固態高分子電解質型丙酮氣體感測器,並將之應用於臨床方面,以找出糖尿病患者呼氣成分中的丙酮濃度與血糖濃度之間的關係或與醫師合作直接用丙酮濃度診斷糖尿病。此外,也成功地與微小型恆電位儀作整合,使此種非侵入式感測器在未來微小化及商品化更具可行性。
    固態高分子電解質型丙酮氣體感測器由工作電極(鉛)、參考電極(改良式銀/氯化銀)、輔助電極(白金)及含有奈米級二氧化矽與離子液體BMIPF6 的PVdF(HFP)固態高分子電解質所構成。
    感測電流訊號會受到固態高分子電解質組成之離子液體/高分子重量比、奈米級二氧化矽添加量及厚度所影響。當感測器由施加90V偏壓真空濺鍍製成之鉛工作電極,離子液體/高分子重量比為2與20wt%奈米級二氧化矽及50mL溶劑之高分子電解質所構成;感測條件為施加電位-0.9V(vs. 改良式銀/氯化銀參考電極),氣體流速為25mL/min時,有最佳的感測性質:結果顯示,丙酮濃度1~100ppm的感測靈敏度為0.2830 µAcm-2ppm-1;丙酮濃度100~250ppm的感測靈敏度為0.5933 µAcm-2ppm-1,平均應答時間約為60秒,感測極限可達1ppm。
      在臨床應用方面可將糖尿病患者與健康者作區別,也成功地與微小型恆電位儀作整合,其整合的結果與商業大型恆電位儀訊號差異在25 %以內,使未來商品化及微小化更具有潛力。

    The solid polymer electrolyte-based acetone gas sensor has been developed in order to diagnose diabetes. The main characteristics of diabetes are a lack of insulin and a high concentration of blood sugar. These phenomena can result in an increased production of fatty acids, which are then converted into ketone bodies. Acetone is the final product of the metabolism of the ketone bodies; thus, a rapid and quantitative determination of acetone in expired air is important and useful for the diagnosis of diabetes.
    In this study, the sputtered lead working electrode prepared with 90V bias voltage in the sputter chamber. The polymer electrolyte with BMIPF6/PVdF(HFP) weight ratio equal to 2, with 20wt% nano SiO2 and with 50mL solvent was used as solid polymer electrolyte. Platinum and modified Ag/AgCl were used as counter and reference electrodes, respectively. The applied voltage and gas flow rate were -0.9V vs. modified Ag/AgCl reference electrode and 25mL/min, respectively. .
    The response current was affected by the ionic liquid/polymer weight ratio, the amount of nano SiO2 and the thickness of the polymer electrolyte. The result indicated that the acetone gas sensor showed good reproducibility and high sensitivity: 0.2030µAcm-2ppm-1 in the detection range from 1 to 100ppm and 0.5933µAcm-2ppm-1 in the detection range from 100 to 250ppm. Two linear relationships between the current density and the concentration of acetone in low and high concentration regions were obtained. The average response time was 60sec, and limit detection concentration was 1ppm.
    In clinical application, we measured the expired air of diabetic patients to find out the initial relationship between concentration of blood sugar and acetone. By using the developed acetone sensor, the differences of acetone responses between diabetic patients and healthy person were obtained. The sensor was also successfully integrated with the homemade potentiostat. To commercialize this developed acetone sensing system is potential.

    摘要I AbstractIII 致謝V 總目錄VI 表目錄XII 圖目錄XIV 符號說明XIX 第一章 序論1 1-1 呼氣分析與疾病診斷1 1-2 丙酮與糖尿病診斷4 1-3 呼氣分析儀器7 1-4 高分子電解質簡介8 1-4-1 離子液體(Ionic liquid)-高分子電解質11 1-4-2 添加奈米級摻雜物14 1-5 研究動機19 1-5-1 目前糖尿病診斷方法21 1-5-2 丙酮診斷糖尿病之研發23 1-6 研究目的26 第二章 理論分析27 2-1 有機化合物的氧化還原反應27 2-2 丙酮氣體於鉛工作電極表面還原的反應機制28 2-3 丙酮還原之擴散及動力模式探討29 2-4 高分子電解質型丙酮氣體感測器中電流與擴散層厚度之關係36 第三章 實驗藥品、儀器與步驟38 3-1 藥品38 3-2 儀器設備及原理39 3-2-1 磁控濺鍍原理(Magnetron sputter)40 3-2-2 恆電位儀(Potentiostat)42 3-2-3 表面粗度儀(Alpha-step Profilometer)42 3-3 電極之製作44 3-3-1 基材氧化鋁板之清洗48 3-3-2 工作電極及輔助電極之製作48 3-3-3 改良式參考電極之製作 49 3-4 固態高分子電解質之製備50 3-4-1 高分子電解質製備方法一:製備高分子-離子液體固態高分子電解質薄膜,再覆蓋於電極上感測50 3-4-2 高分子電解質製備方法二:高分子-離子液體固態高分子電解質溶液直接於電極上形成薄膜51 3-5 參考電極之穩定性測試52 3-6 以循環伏安法求取電位窗52 3-6-1 循環伏安法於高分子電解質製備方法一52 3-6-2 循環伏安法於高分子電解質製備方法二53 3-7線性伏安法53 3-7-1 線性伏安法於高分子電解質製備方法一53 3-7-2 線性伏安法於高分子電解質製備方法二53 3-8 應答曲線及校正曲線54 3-9 靈敏度及應答時間的量測54 3-10 將感測器應用於臨床方面55 3-11表面粗度儀(Alpha-step Profilometer)分析55 3-12 掃描式電子顯微鏡(Scanning electron microscopy, SEM)分析56 第四章 結果與討論57 4-1 施加不同偏壓於真空濺鍍下所得到的鉛工作電極57 4-2 高分子電解質製備方法一(製備高分子-離子液體固態高分子電解質薄膜,再覆蓋於電極上感測)之感測應用57 4-2-1 線性伏安法(Linear Voltammetry)探討丙酮還原之極限電流電位窗區域59 4-2-2 應答曲線與濃度校正曲線61 4-2-3 微小型恆電位儀的應用64 4-3 高分子電解質製備方法二(高分子-離子液體固態高分子電解質溶液直接於電極上形成薄膜)之感測應用67 4-3-1 參考電極穩定性測試67 4-3-2 循環伏安法(Cyclic Voltammetry, CV)70 4-3-3 線性伏安法(Linear Voltammetry)探討丙酮還原之極限電流電位窗區域70 4-3-4 應答曲線及濃度校正曲線71 4-3-5 微小恆電位儀的應用72 4-3-6 高分子電解質添加不同離子液體/高分子重量比對感測行為影響73 4-3-7 固態高分子電解質中不同奈米級二氧化矽含量對感測行為的影響81 4-3-8 固態高分子電解質中不同溶劑體積及不同厚度對感測行為的影響85 4-3-9 氣體流速對感測行為的影響92 4-3-10 電極穩定性測試92 4-4 糖尿病患者臨床生醫量測93 第五章 綜合討論101 5-1 動力控制與擴散控制101 5-2 臨床應用上的探討103 5-3 微小型恆電位儀103 5-4 丙酮感測器的發展104 第六章 結論與建議110 6-1 結論110 6-2 未來工作建議111 參考文獻113 附錄117 A. 高分子電解質製備方法三:高分子-離子液體固態高分子電解質加入碳酸丙烯酯(Propylene carbonate,PC)作為助溶劑,並直接於電極上形成薄膜117 B. 固態高分子電解型丙酮氣體感測器實際外觀120 C. 微小恆電位儀實際外觀121 自述122

    [1]F.D. Francesco, R. Fuoco, M.G. Trivella, A. Ceccarini, Breath analysis: trends in techniques and clinical applications, Microchemical Journal 79 (2005) 405-410.
    [2]M. Kurt, Breath analysis as a technique in clinical chemistry, Clin. Chem. 20 (1974) 966-972.
    [3]W. Miekisch, J. K. Schubert, G.F.E. Noeldge-Schomburg, Diagnostic potential of breath analysis- focus on volatile organic compounds, Clinica Chimica Acta 347 (2004) 25-39.
    [4]W.H. Cheng, W.J. Lee, Technology development in breath microanalysis for clinical diagnosis, J. Lab. Clin. Med. 133 (1999) 218-228.
    [5]A. Manolis, The diagnostic potential of breath analysis, Clin. Chem. 29 (1983) 5-15.
    [6]M. Phillips, Method for the collection and assay of volatile organic compounds in breath, Analytical Biochemistry 247 (1997) 272-278.
    [7]W. Miekisch, J.K. Schubert, From highly sophisticated analytical techniques to life-saving diagnostics: Technical developments in breath analysis, Trends in Analytical Chemistry 25 (2006) 665-673.
    [8]L. Laffel, Ketone bodies: a review of physiology, pathophysiology, and application of monitoring to diabetes, Diabetes/Metabolism Research and Reviews 15 (1999) 412-426.
    [9]N. Yamane, T. Tsuda, K. Nose, A. Yamamoto, H. Ishiguro, T. Kondo, Relationship between skin acetone and blood β-hydroxybutyrate concentration in diabetes, Clinica Chimica Acta 365 (2006) 325-329.
    [10]C.C. Yang, S.J. Lin, Preparation of composite alkaline polymer electrolyte, Materials Letters 57 (2002) 873-881.
    [11]S. Rajendran, O. Mahendran, R. Kannan, Lithium ion conduction in plasticized PMMA-PVdF polymer blend electrolytes, Materials Chemistry and physicals 74 (2002) 52-57.
    [12]G.B. Appetecchi, F. Croce, P. Romagnoli, B. Scrosati, U. Heider, R. Oesten, High-performance gel-type lithium electrolyte membranes, Electrochemistry Communications 1 (1999) 83-86.
    [13]C.C. Yang, S.J. Lin, S.T. Hsu, Synthesis and characterization of alkaline polyvinyl alcohol and poly(epichlorohydrin) blend polymer electrolytes and performance in electrochemical cells, Journal of Power Sources 122 (2003) 210-218.
    [14]B. Adhikari, S. Majumdar, Polymers in sensor applications, Prog. Polym. Sci. 29 (2004) 699-766.
    [15]K. Buhlmann, B. Schlatt, K. Cammann, A. Shulga, Plasticised polymeric electrolytes: new extremely versatile receptor materials for gas sensors (VOCs monitoring) and electronic noses (odour identification/discrimination), Sensors and Actuators B 49 (1998) 156-165.
    [16]J.Y. Song, Y.Y. Wang, C.C. Wan, Review of gel-type polymer electrolytes for lithium-ion batteries, Journal of Power Sources 77 (1999) 183-197.
    [17]R. Wang, T. Okajima, F. Kitamura, T. Ohsaka, A novel amperometric O2 gas sensor based on supported room-temperature ionic liquid porous polyethylene membrane-coated electrodes, Electroanalysis 16 (2003) 66-72.
    [18]H. Ohno, Electrochemical aspects of ionic liquids, John Wiley & Sons, Inc., Hoboken, 2005.
    [19]J. Fuller, A. C. Breda, R.T. Carlin, Ionic liquid-polymer gel electrolytes, J. Electrochem. Soc. 144 (1997) L67-L70.
    [20]J. Fuller, A. C. Breda, R. Carlin, Ionic liquid-polymer gel electrolytes from hydrophilic and hydrophobic ionic liquids, Journal of Electroanalytical Chemical 459 (1998) 29-34.
    [21]K.S. Kim, S.Y. Park, S. Choi, H. Lee, Ionic liquid-polymer gel electrolytes based on morpholinium salt and PVdF(HFP) copolymer, Journal of Power Sources 155 (2006) 385-390.
    [22]R. Wang, S. Hoyano, T. Ohsaka, O2 Gas Sensor Using Supported Hydrophobic Room-Temperature Ionic Liquid Membrane-coated electrode, Chemistry Letters 33 (2004).
    [23]A. M. Stephan, Y. Saito, Ionic conductivity and diffusion coefficient studies of PVdF-HFP polymer electrolytes prepared using phase inversion technique, Solid State Ionics 148 (2002) 475-481.
    [24]K. M. Kim, N.G. Park, K. S. Ryu, S.H. Chang, Characteristics of PVdF-HFP/TiO2 composite membrane electrolytes prepared by phase inversion and conventional casting methods, Electrochimica Acta 51 (2006) 5636-5644.
    [25]S.H. Chung, Y. Wang, L. Persi, F. Croce, S.G. Greenbaum, B. Scrosati, E. Plichta, Enhancement of ion transport polymer electrolytes by addition of nanoscale inorganic oxides, Journal of Power Sources 97-98 (2001) 644-648.
    [26]Z. Li, G. Su, D. Gao, X. Wang, X. Li, Effect of Al2O3 nanoparticles on the electrochemical characteristics of P(VDF-HFP)-based polymer electrolyte, Electrochimica Acta 49 (2004) 4633-4639.
    [27]Z. Li, G. Su, X. Wang, D. Gao, Micro-porous P(VDF-HFP)-based polymer electrolyte filled with Al2O3 nanoparticles, Solid State Ionics 176 (2005) 1903-1908.
    [28]Insititute of Occupational Safety & Health, http://www.iosh.gov.tw/.
    [29]World Health Organization, http://www.who.int/diabetes/facts/en.
    [30]L. Laffel, Ketone bodies: a review of physiology, pathophysiology, and application of monotoring to diabetes, Diabetes/Metabolism Research and Reviews 15 (1999) 412-426.
    [31]M. Fleischer, E. Simon, R. Eva, H. Ulmer, M. Harbeck, M. Wandel, C. Fietzek, U. Weimar, H. Meixner, Detection of volatile compounds correlated to human diseases through breath analysis with chemical sensors, Sensors and Actuators B 83 (2002) 245-249.
    [32]S.V. Ryabtsev, A.V. Shaposhnick, A.N. Lukin, E.P. Domashevskaya, Application of semiconductor gas sensors for medical diagnosis, Sensors and Actuators B 59 (1999) 26-29.
    [33]X. Liu, H. Ji, Y. Gu, M. Xu, Preparation and acetone sensitive characteristics of nano-LaFeO3 semiconductor thin films by polymerization complex method, Materials Science and Engineering B 133 (2006) 98-101.
    [34]N. Makisimovich, V. Vorotyntsev, N. Nikitina, O. Kaskevich, P. Karabun, F. Martynenko, Adsorption semiconductor sensor for diabetic ketoacidosis diagnosis, Sensors and Actuators B 35-36 (1996) 419-421.
    [35]J.B. Yu, H.G. Byun, M.S. So, J.S. Huh, Analysis of diabetic patient's breath with conducting polymer sensor array, Sensors and Actuators B 108 (2005) 305-308.
    [36]H. Huang, J. Zhou, S. Chen, L. Zeng, Y. Huang, A highly sensitive QCM sensor coated with Ag+-ZSM-5 film foe medical diagnosis, Sensors and Actuators B 101 (2004) 316-321.
    [37]Q. Zhang, P. Wang, J. Li, X. Gao, Diagnosis of diabetes by image detection of breath using gas-sensitive laps, Biosensors & Bioelectronics 15 (2000) 249-256.
    [38]C.C. Wang, Y.C. Weng, T.C. Chou, Acetone sensor using lead foil as working electrode, Sensors and Actuators B (2007) 591-595.
    [39]T. S. Chambers, O.C. Slotterbeck, Electrodepositing lead on copper from a nitrate bath, in: U.S.P. Office (Ed.), 1944.
    [40]P. J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum 56 (2000) 159-172.
    [41]W.Y. Liao, T.C. Chou, Fabrication of a planar-form screen-printed solid electrolyte modified Ag/AgCl reference electrode for application in a potentiometric biosensor, Anal. Chem. 78 (2006) 4219-4223.
    [42]游明莉, 非侵入式糖尿病診斷之丙酮氣體感測器, 國立成功大學化學工程系碩士論文 (2005).
    [43]徐嘉穗, 利用薄膜技術製備電化學式丙酮感測器之研究, 國立成功大學化學工程系碩士論文 (2003).
    [44]H. Suzuki, A. Hiratsuka, S. Ssaki, I. Karube, Problems associated with the thin-film Ag/AgCl reference electrode and a novel structure with improved durability, Sensors and Actuators B 46 (1998) 104-113.

    下載圖示 校內:2010-08-15公開
    校外:2010-08-15公開
    QR CODE