簡易檢索 / 詳目顯示

研究生: 吳秉樺
Wu, Bing-Hua
論文名稱: 通過物聯網微流體裝置分析斑馬魚心血管功能
Zebrafish cardiovascular analyses with IoT microfluidics
指導教授: 陳嘉元
Chen, Chia-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 61
中文關鍵詞: 微流體裝置物聯網斑馬魚心血管參數
外文關鍵詞: Microfluidic devices, Internet of Things, zebrafish, cardiovascular parameters
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I 致謝 XV 目錄 XVI 圖目錄 XX 表目錄 XXII 第1章、 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 斑馬魚 (Danio rerio) 2 1.2.1.1 斑馬魚動物模型 2 1.2.1.2 斑馬魚幼魚之心血管發育與心血管動物模型 5 1.2.1.3 斑馬魚幼魚的心血管參數 10 1.2.2 斑馬魚微流體裝置 10 1.2.2.1 微流體裝置之發展 10 1.2.2.2 斑馬魚微流體裝置之應用 11 1.2.3 物聯網技術 14 1.2.3.1 物聯網 (Internet of Things) 14 1.2.3.2 物聯網技術的應用 15 1.3 研究動機 16 1.4 研究目標 17 第2章、 材料與研究方法 18 2.1 斑馬魚 18 2.1.1 斑馬魚成魚飼養 18 2.1.2 斑馬魚幼魚準備 18 2.2 微流體裝置 19 2.2.1 微流體裝置之設計 19 2.2.2 微流體裝置之製作流程 21 2.3 實驗平台 24 2.3.1 系統架構 24 2.3.2 硬體介紹 27 2.3.2.1 控制核心 27 2.3.2.2 感測器 27 2.3.3 系統開發與實現 28 2.3.4 訊號處理技術 31 2.3.4.1 I2C通訊協定 31 2.3.4.2 PWM信號 31 2.4 實驗方式 32 2.4.1 斑馬魚培育實驗 32 2.4.2 評估篩選之微流體裝置可行性 34 2.4.2.1 環境對幼魚心率影響之實驗 34 2.5 分析方法 34 2.5.1 評估生長環境對斑馬魚的影響 34 2.5.2 壁面變化之量測方法 35 2.5.3 斑馬魚軸向旋轉角度分析 36 2.5.4 幼魚心跳頻率分析法 36 第3章、 結果與討論 38 3.1 物聯網裝置的優勢 38 3.2 斑馬魚觀測系統感測器之實時監控 41 3.3 飼養環境對斑馬魚之影響 43 3.3.1 飼養環境對斑馬魚存活率的影響 43 3.3.2 飼養環境對斑馬魚生長情形的影響 45 3.4 微流體裝置之可行性 47 3.4.1 微流體裝置壁面變化之討論 47 3.4.2 斑馬魚軸向旋轉之量化 49 3.4.3 溫度對幼魚心率之影響 50 第4章、 總結與未來展望 53 4.1 總結 53 4.2 未來展望 54 參考文獻 56

    [1] K. Howe, M. D. Clark, C. F. Torroja, J. Torrance, C. Berthelot, M. Muffato, J. E. Collins, S. Humphray, K. McLaren, and L. Matthews, "The zebrafish reference genome sequence and its relationship to the human genome," in Nature vol. 496, pp. 498-503.
    [2] S. Guo, "Using zebrafish to assess the impact of drugs on neural development and function," in Expert opinion on drug discovery vol. 4, pp. 715-726.
    [3] D. R. Brown, L. A. Samsa, L. Qian, and J. Liu, "Advances in the study of heart development and disease using zebrafish," in Journal of cardiovascular development and disease vol. 3, p. 13.
    [4] A. M. Stewart, O. Braubach, J. Spitsbergen, R. Gerlai, and A. V. Kalueff, "Zebrafish models for translational neuroscience research: from tank to bedside," in Trends in neurosciences vol. 37, pp. 264-278.
    [5] P. McGrath and C.-Q. Li, "Zebrafish: a predictive model for assessing drug-induced toxicity," in Drug discovery today vol. 13, pp. 394-401.
    [6] P. Asharani, Y. L. Wu, Z. Gong, and S. Valiyaveettil, "Toxicity of silver nanoparticles in zebrafish models," in Nanotechnology vol. 19, p. 255102.
    [7] Y. Gibert, M. Trengove, and A. Ward, "Zebrafish as a genetic model in pre-clinical drug testing and screening," in Current medicinal chemistry vol. 20, pp. 2458-2466.
    [8] P. K. Chan, C. C. Lin, and S. H. Cheng, "Noninvasive technique for measurement of heartbeat regularity in zebrafish (Danio rerio) embryos," in BMC biotechnology vol. 9, pp. 1-10.
    [9] C. Xu, S. Volkery, and A. F. Siekmann, "Intubation-based anesthesia for long-term time-lapse imaging of adult zebrafish," in Nature Protocols vol. 10, pp. 2064-2073.
    [10] Y.-F. Wang, I. Chen, S. Subendran, C.-W. Kang, B. Panigrahi, T.-F. Fu, and C.-Y. Chen, "Edible additive effects on zebrafish cardiovascular functionality with hydrodynamic assessment," in Scientific reports vol. 10, pp. 1-8.
    [11] C.-Y. Chen, T.-C. Chang Chien, K. Mani, and H.-Y. Tsai, "Axial orientation control of zebrafish larvae using artificial cilia," in Microfluidics and nanofluidics vol. 20, pp. 1-9.
    [12] R. Geisler, A. Köhler, T. Dickmeis, and U. Strähle, "Archiving of zebrafish lines can reduce animal experiments in biomedical research," in EMBO reports vol. 18, pp. 1-2.
    [13] C. Santoriello and L. I. Zon, "Hooked! Modeling human disease in zebrafish," in The Journal of clinical investigation vol. 122, pp. 2337-2343.
    [14] K. Dooley and L. I. Zon, "Zebrafish: a model system for the study of human disease," in Current opinion in genetics & development vol. 10, pp. 252-256.
    [15] G. J. Lieschke and P. D. Currie, "Animal models of human disease: zebrafish swim into view," in Nature Reviews Genetics vol. 8, pp. 353-367.
    [16] P. Goldsmith, "Zebrafish as a pharmacological tool: the how, why and when," in Current opinion in pharmacology vol. 4, pp. 504-512.
    [17] C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann, and T. F. Schilling, "Stages of embryonic development of the zebrafish," in Developmental dynamics vol. 203, pp. 253-310.
    [18] U. J. Pyati, A. T. Look, and M. Hammerschmidt, "Zebrafish as a powerful vertebrate model system for in vivo studies of cell death," in Seminars in cancer biology vol. 17, pp. 154-165.
    [19] G. Zhang, X. Yu, G. Huang, D. Lei, and M. Tong, "An improved automated zebrafish larva high-throughput imaging system," in Computers in Biology and Medicine vol. 136, p. 104702.
    [20] A. Schuermann, C. S. Helker, and W. Herzog, "Angiogenesis in zebrafish," in Seminars in cell & developmental biology vol. 31, pp. 106-114.
    [21] K.-T. Kim and R. L. Tanguay, "Integrating zebrafish toxicology and nanoscience for safer product development," in Green chemistry vol. 15, pp. 872-880.
    [22] S. Tu and N. C. Chi, "Zebrafish models in cardiac development and congenital heart birth defects," in Differentiation vol. 84, pp. 4-16.
    [23] J. J. Schoenebeck and D. Yelon, "Illuminating cardiac development: Advances in imaging add new dimensions to the utility of zebrafish genetics," in Seminars in cell & developmental biology vol. 18, pp. 27-35.
    [24] Z. Z. Zakaria, F. M. Benslimane, G. K. Nasrallah, S. Shurbaji, N. N. Younes, F. Mraiche, S. I. Da’as, and H. C. Yalcin, "Using zebrafish for investigating the molecular mechanisms of drug-induced cardiotoxicity," in BioMed research international vol. 2018.
    [25] D. Y. Stainier, "Zebrafish genetics and vertebrate heart formation," in Nature Reviews Genetics vol. 2, pp. 39-48.
    [26] F. M. Benslimane, Z. Z. Zakaria, S. Shurbaji, M. K. A. Abdelrasool, M. A. H. Al-Badr, E. S. K. Al Absi, and H. C. Yalcin, "Cardiac function and blood flow hemodynamics assessment of zebrafish (Danio rerio) using high-speed video microscopy," in Micron vol. 136, p. 102876.
    [27] D. Bournele and D. Beis, "Zebrafish models of cardiovascular disease," in Heart failure reviews vol. 21, pp. 803-813.
    [28] C. A. MacRae, "Cardiac Arrhythmia: In vivo screening in the zebrafish to overcome complexity in drug discovery," in Expert opinion on drug discovery vol. 5, pp. 619-632.
    [29] K. Kodo, T. Nishizawa, M. Furutani, S. Arai, K. Ishihara, M. Oda, S. Makino, K. Fukuda, T. Takahashi, and R. Matsuoka, "Genetic analysis of essential cardiac transcription factors in 256 patients with non-syndromic congenital heart defects," in Circulation Journal vol. 76, pp. 1703-1711.
    [30] S. Sarmah, P. Muralidharan, and J. A. Marrs, "Embryonic ethanol exposure dysregulates Bmp and Notch signaling, leading to persistent atrio-ventricular valve defects in zebrafish," in PLoS One vol. 11, p. e0161205.
    [31] K. D. Poss, "Getting to the heart of regeneration in zebrafish," in Seminars in cell & developmental biology vol. 18, pp. 36-45.
    [32] K. D. Poss, L. G. Wilson, and M. T. Keating, "Heart regeneration in zebrafish," in Science vol. 298, pp. 2188-2190.
    [33] A. Asnani and R. T. Peterson, "The zebrafish as a tool to identify novel therapies for human cardiovascular disease," in Disease models & mechanisms vol. 7, pp. 763-767.
    [34] J. Eriksson and J. Löfberg, "Development of the hypochord and dorsal aorta in the zebrafish embryo (Danio rerio)," in Journal of morphology vol. 244, pp. 167-176.
    [35] E. Ellertsdóttir, A. Lenard, Y. Blum, A. Krudewig, L. Herwig, M. Affolter, and H.-G. Belting, "Vascular morphogenesis in the zebrafish embryo," in Developmental biology vol. 341, pp. 56-65.
    [36] S. Isogai, M. Horiguchi, and B. M. Weinstein, "The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development," in Developmental biology vol. 230, pp. 278-301.
    [37] H. E. Salman and H. C. Yalcin, "Advanced blood flow assessment in Zebrafish via experimental digital particle image velocimetry and computational fluid dynamics modeling," in Micron vol. 130, p. 102801.
    [38] S. Eisa-Beygi, F. M. Benslimane, S. El-Rass, S. Prabhudesai, M. K. A. Abdelrasoul, P. M. Simpson, H. C. Yalcin, P. E. Burrows, and R. Ramchandran, "Characterization of endothelial cilia distribution during cerebral-vascular development in zebrafish (Danio rerio)," in Arteriosclerosis, thrombosis, and vascular biology vol. 38, pp. 2806-2818.
    [39] H. C. Yalcin, "Hemodynamic studies for analyzing the teratogenic effects of drugs in the zebrafish embryo," in Teratogenicity Testing, pp. 487-495.
    [40] C. DeGroff, "Doppler echocardiography," in Pediatric cardiology vol. 23, pp. 307-333.
    [41] S. Subendran, Y.-C. Wang, Y.-H. Lu, and C.-Y. Chen, "The evaluation of zebrafish cardiovascular and behavioral functions through microfluidics," in Scientific reports vol. 11, pp. 1-10.
    [42] N. M. Fuad, J. Kaslin, and D. Wlodkowic, "Lab-on-a-Chip imaging micro-echocardiography (iμEC) for rapid assessment of cardiovascular activity in zebrafish larvae," in Sensors and Actuators B: Chemical vol. 256, pp. 1131-1141.
    [43] X. Lin, V. W. Li, S. Chen, C.-Y. Chan, S.-H. Cheng, and P. Shi, "Autonomous system for cross-organ investigation of ethanol-induced acute response in behaving larval zebrafish," in Biomicrofluidics vol. 10, p. 024123.
    [44] R. H. Weber, "Internet of things–Need for a new legal environment?," in Computer law & security review vol. 25, pp. 522-527.
    [45] M. Lazarević, G. Ostojić, D. Lukić, M. Milošević, and A. Antić, "Smart Production Systems: Methods and Application," in 2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH), pp. 1-4.
    [46] M. Wu, T.-J. Lu, F.-Y. Ling, J. Sun, and H.-Y. Du, "Research on the architecture of Internet of Things," in 2010 3rd international conference on advanced computer theory and engineering (ICACTE) vol. 5, pp. V5-484-V5-487.
    [47] C. Yuqiang, G. Jianlan, and H. Xuanzi, "The research of internet of things' supporting technologies which face the logistics industry," in 2010 International Conference on Computational Intelligence and Security, pp. 659-663.
    [48] J. Luo, Y. Chen, K. Tang, and J. Luo, "Remote monitoring information system and its applications based on the Internet of Things," in 2009 international conference on future biomedical information engineering (FBIE), pp. 482-485.
    [49] W. Rong, G. T. Vanan, and M. Phillips, "The internet of things (IoT) and transformation of the smart factory," in 2016 International Electronics Symposium (IES), pp. 399-402.
    [50] A. Forouhar, J. Hove, C. Calvert, J. Flores, H. Jadvar, and M. Gharib, "Electrocardiographic characterization of embryonic zebrafish," in The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society vol. 2, pp. 3615-3617.
    [51] R. E. Hernandez, L. Galitan, J. Cameron, N. Goodwin, and L. Ramakrishnan, "Delay of initial feeding of zebrafish larvae until 8 days postfertilization has no impact on survival or growth through the juvenile stage," in Zebrafish vol. 15, pp. 515-518.
    [52] E. A. Schmitt and J. E. Dowling, "Early retinal development in the zebrafish, Danio rerio: light and electron microscopic analyses," in Journal of Comparative Neurology vol. 404, pp. 515-536.
    [53] N. Villamizar, L. M. Vera, N. S. Foulkes, and F. J. Sánchez-Vázquez, "Effect of lighting conditions on zebrafish growth and development," in Zebrafish vol. 11, pp. 173-181.
    [54] M. Matthews, B. Trevarrow, and J. Matthews, "A virtual tour of the Guide for zebrafish users," in Lab Anim (NY) vol. 31, pp. 34-40.
    [55] E. Sanders and S. C. Farmer, "Aquatic models: water quality and stability and other environmental factors," in ILAR journal vol. 60, pp. 141-149.
    [56] K. Mani, Y.-C. Hsieh, B. Panigrahi, and C.-Y. Chen, "A noninvasive light driven technique integrated microfluidics for zebrafish larvae transportation," in Biomicrofluidics vol. 12, p. 021101.
    [57] A. G. Bakaoukas, K.-M. Chao, and W. Li, "Pulse Width Modulation (PWM) Method for Power Components Estimation-Active and Reactive Power Measurement," in 2013 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1040-1045.
    [58] E. Woynarovich and L. Horváth, The artificial propagation of warm-water finfishes: a manual for extension (no. 201). 1980.
    [59] C. Wang, Z. Li, T. Wang, X. Xu, X. Zhang, and D. Li, "Intelligent fish farm—the future of aquaculture," in Aquaculture International vol. 29, pp. 2681-2711.
    [60] K. Mani and C.-Y. Chen, "A smart microfluidic-based fish farm for zebrafish screening," in Microfluidics and Nanofluidics vol. 25, pp. 1-12.
    [61] B. Tsang and R. Gerlai, "Breeding and larviculture of zebrafish (Danio rerio)," in Laboratory Fish in Biomedical Research, pp. 63-80.
    [62] R. Strecker, T.-B. Seiler, H. Hollert, and T. Braunbeck, "Oxygen requirements of zebrafish (Danio rerio) embryos in embryo toxicity tests with environmental samples," in Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology vol. 153, pp. 318-327.
    [63] T. S. Andrade, J. F. Henriques, A. R. Almeida, A. M. Soares, S. Scholz, and I. Domingues, "Zebrafish embryo tolerance to environmental stress factors—Concentration–dose response analysis of oxygen limitation, pH, and UV‐light irradiation," in Environmental toxicology and chemistry vol. 36, pp. 682-690.
    [64] R. C. Schirone and L. Gross, "Effect of temperature on early embryological development of the zebra fish, Brachydanio rerio," in Journal of Experimental Zoology vol. 169, pp. 43-52.
    [65] S. Weigt, N. Huebler, T. Braunbeck, F. von Landenberg, and T. H. Broschard, "Zebrafish teratogenicity test with metabolic activation (mDarT): effects of phase I activation of acetaminophen on zebrafish Danio rerio embryos," in Toxicology vol. 275, pp. 36-49.
    [66] G. Sun, M. Li, J. Wang, and Y. Liu, "Effects of flow rate on growth performance and welfare of juvenile turbot (Scophthalmus maximus L.) in recirculating aquaculture systems," in Aquaculture research vol. 47, pp. 1341-1352.
    [67] Q. Zhang, M. Kopp, I. Babiak, and J. M. Fernandes, "Low incubation temperature during early development negatively affects survival and related innate immune processes in zebrafish larvae exposed to lipopolysaccharide," in Scientific reports vol. 8, pp. 1-14.
    [68] G. R. Scott and I. A. Johnston, "Temperature during embryonic development has persistent effects on thermal acclimation capacity in zebrafish," in Proceedings of the National Academy of Sciences vol. 109, pp. 14247-14252.
    [69] M. A. Denvir, C. S. Tucker, and J. J. Mullins, "Systolic and diastolic ventricular function in zebrafish embryos: influence of norepenephrine, MS-222 and temperature," in BMC biotechnology vol. 8, pp. 1-8.
    [70] T. Schwerte, C. Prem, A. Mairösl, and B. Pelster, "Development of the sympatho-vagal balance in the cardiovascular system in zebrafish (Danio rerio) characterized by power spectrum and classical signal analysis," in Journal of Experimental Biology vol. 209, pp. 1093-1100.
    [71] R. Kopp, B. Pelster, and T. Schwerte, "How does blood cell concentration modulate cardiovascular parameters in developing zebrafish (Danio rerio)?," in Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology vol. 146, pp. 400-407.
    [72] P. J. Rombough, "Ontogenetic changes in the toxicity and efficacy of the anaesthetic MS222 (tricaine methanesulfonate) in zebrafish (Danio rerio) larvae," in Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology vol. 148, pp. 463-469.
    [73] C. G. Burns, D. J. Milan, E. J. Grande, W. Rottbauer, C. A. MacRae, and M. C. Fishman, "High-throughput assay for small molecules that modulate zebrafish embryonic heart rate," in Nature chemical biology vol. 1, pp. 263-264.
    [74] J. Liu, M. Bressan, D. Hassel, J. Huisken, D. Staudt, K. Kikuchi, K. D. Poss, T. Mikawa, and D. Y. Stainier, "A dual role for ErbB2 signaling in cardiac trabeculation," in Development vol. 137, pp. 3867-3875.
    [75] M. Mickoleit, B. Schmid, M. Weber, F. O. Fahrbach, S. Hombach, S. Reischauer, and J. Huisken, "High-resolution reconstruction of the beating zebrafish heart," in Nature methods vol. 11, pp. 919-922.

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE