| 研究生: |
蔡崇良 Tsai, Liang-Chung |
|---|---|
| 論文名稱: |
分析鐵路道床鋪設瀝青混凝土之力學行為
~以屏東潮州捷運化為例~ Analysis of Mechanical Behavior of Asphalt Concrete in Railway Track– Case Study of Pington – Chaojou Rapid Transit Line |
| 指導教授: |
陳建旭
Chen, Jian-shiuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系碩士在職專班 Department of Civil Engineering (on the job class) |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 捷運化 、瀝青混凝土 、鐵路 |
| 外文關鍵詞: | rapid transit line, asphalt concrete, railway |
| 相關次數: | 點閱:74 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
今運用KENTRACK程式之疊加荷重、彈性多數層及有限元素理論來研究臺鐵屏東捷運化規劃路線之隘寮溪路堤段於鐵路軌道結構採用3種型式,第1種為道碴-底碴-路基、第2種為道碴-熱拌瀝青混凝土-路基及第3種全斷面熱拌瀝青混凝土-路基,其中第1及2種頂層材料使用25公分道碴,路基選用土壤類別A-6、A-5、A-4及A-3(彈性模數15.5、31、62及104MPa),列車軸重15、16及18公噸以1Hz週期頻率經由鋼軌-扣件系統- 軌枕傳遞於道床3種不同層厚的材料彈性模數及不同路基彈性模數,研究結果顯示,維持鐵路軌道結構整體性強度,路基彈性模數及道床結構強度乃為重要關鍵,當路基彈性模數越佳所能承受軸重之路基垂直壓應力越大並可減少路基垂直壓應變,而道床(底碴、HMA及HMA全斷面)厚度的增加對降低路基垂直壓應力、減少路基垂直壓應變及提升服務年限有實質效果,就道床結構使用底層HMA或HMA全斷面材料替代底碴(碎石級配)材料有減少應力、應變及增加服務年限之功用,於路基採用彈性模數104MPa下,HMA隨層厚越厚產生張應變越小,相對HMA及路基服務年限越久,但會隨著軸重遞增而減低服務年限,為維持服務年限可增加HMA厚度。
採用3種道床結構型式【道碴( 25公分)及底碴或道碴( 25公分)及底層HMA或HMA全斷面】,相較於相同深度30、35、45及55公分下,以軸重16公噸作用在路基彈性模數104MPa而言,產生符合路基容許垂直壓應變值1×10 之道床深度如下:底碴45及55公分、HMA35、45及55公分、HMA全斷面30、35、45及55公分,產生符合HMA容許水平張應變值5.387×10 之道床深度如下:
HMA30、35、45及55公分、HMA全斷面30、35、45及55公分,以上研究歸納結論如下:最佳HMA全斷面,次佳道碴-HMA,次次佳道碴-底碴,因此,道床可選用不同材料及厚度來符合應變值。
This research uses the overlapped-loading, elastic-multi-layers and finite-element theory from KENTRACK program to analyze railway bedding structure in the lot of I-Liu-creek embankment of the Taiwan Railway Ping-Tung MRT planning project.
There are three assumed types for the railway bedding structure.
The first type is ballast-base ballast-track subgrade formation. The second type is ballast-bitumen asphalt-track subgrade formation.
The third type is full section bitumen asphalt-track subgrade formation.Top layer material for type 1 and type 2 is 25 centimeters thickness ballast. Soil types for track subgrade are A-6、A-5、A-4/ A-3( elastic modulus is 15.5、31、62 and 104MPa). Applied axial Loadings of the train are 15、16 and 18 tons which transmit to the above three different thickness/ material / subgrade elastic module types of the track bedding through steel rail / track fastened system / rail sleeper under the 1Hz frequency.
From the result of research, sugrade elastic modulus and the strength of the track bedding structure are the key point to maintain the strength for the whole railway track structure.The better the railway sugrade elastic modulus , the larger the axial loading and vertical stress of sugrade bedding can take. It also can reduce the deformation of sugrade ,and increasing the thickness of track bedding(bottom ballast , HMA & full section HMA ) can also provide the effect about reducing subgrade vertical stress / strain, increasing service life cycle.
Because the bottom subgrade structure using HMA or full section HMA material to replace bottom ballast can reduce stress / strain and increase service life cycle. If the elastic modulus of track subgrade uses 104 MPa, the thicker the HMA and the less the tension strain will produce. The relative service life cycle of the track subgrade and HMA will be longer .On the contrary, the increasing the axial loading, the less the service life cycle will be. So, increasing the thickness of HMA can maintain the service life cycle at less.
By using the above mentioned three types of railway bedding structure【ballast(25cm)/ bottom ballast or ballast( 25cm ) and bottom layer HMA or full-section HMA】and comparison at the depth of 30、35、45 / 55 cm and 16 tons axial loading on the 104MPa elastic modulus subgrade, qualified depth of subgrade under the allowable vertical strain 1×10 are bottom ballast 45、55cm , HMA35、45 / 55cm、full section HMA 30、35、45 / 55cm.
Meanwhile, qualified depth of HMA under the allowable horizontal strain 5.387×10 are HMA30、35、45 / 55cm, full section HMA 30、35、45 /55cm.
Finally, there can conclude the analysis for railway bedding structure and the suitable sequence is full-section HMA, ballast-HMA, ballast-bottom ballast. Therefore, the track bedding subgrade can select different materials and different layers of thickness to satisfy the allowable strain.
王鈞平. (2007). 「動態車輛載重對鋪面績效影響的評估」,碩士論文,國立中央大學土木工程研究所,桃園。
官本俊光,渡邊偕年. (1980). 「線路-軌道的設計及管理」,日本。
林志憲. (1999). 「解析方法應用於柔性鋪面設計」,碩士論文,國立成功大學土木工程研究所,台南。
黃民仁. (1984). 鐵路工程,中國土木水利工程學會,台北。
黃琇雯. (2003). 「路基土壤含水量變化對鋪面永久變形分析之探討」,碩士論文,國立中央大學土木工程研究所,桃園。
蔡嘉章. (1995). 「柔性鋪面最佳模擬試體應用於厚度設計之研究」,碩士論文,國立成功大學土木工程研究所,台南。
蔡雅芳. (2001). 「公路鋪面動態」,碩士論文,國立成功大學土木工程研究所,台南。
內政部營建署. (2002). 市區道路工程規劃及設計規範之研究, 台北。
中興顧問股份有限公司. (2007). 軌道型式評估報告,台北。
交通部. (2006). 1067公厘軌距軌道橋隧檢查養護規範,台北。
交通部臺灣鐵路管理局. (2007). 臺灣鐵路路線建造史,台北。
交通部臺灣鐵路管理局. (2007). 臺灣鐵路管理局運轉規章,台北。
交通部鐵路改建工程局. (2008). UIC60 鋼軌規範,台北。
交通部鐵路改建工程局. (2008). 潘朵爾(PANDROL)扣件系統規範,台北。
昭淩顧問股份有限公司. (2007). 屏東潮州捷運化規劃路線鑽探報告,屏東。
Asphalt Institute (1998). HMA Trackbeds-Hot Mix Asphalt For Quality Railroad and Transit Trackbeds, Informational Series 137.
Brown, E.R., and Kiefer, A. S. (1998). “Use of Hot Mix Asphalt (HMA) in Railroad Construction,” Proceedings of Roadbed Stabilization and Ballast Symposium, AREMA, Ypsilanti, Michigan, pp.25-37.
Cai, Z., Raymond, G.P., and Bathurst, R.J. (1994). “Estimate of Static Track Modulus using Elastic Foundation Models,” Transportation Research Record 1470, pp.65-72.
Deddens, T. (2002). HMA Underlayments Solve Railroad Maintenance Issues, Asphalt Institute.
Dingqing, L.i., Rose, J.G., and LoPresti, J. (2001). “Test of Hot -Mix Asphalt Trackbed Over Soft Subgrade Under Heavy Axle Loads,” Work Performed by a Subsidiary of the Association of American Railroads, Technology Digest-Timely Technology Transfer-01-009
.
European Asphalt Pavement Association (EAPA)(2003), Asphalt in Railway Tracks, Netherlands.
Hensley, M.J., and Rose, J.G. (1998). Design, Construction and Performance of Hot Mix Asphalt for Trackbeds 1st World Conference of Asphalt Pavements, Asphalt Institute Executive Offices and Research Center, Sydney, Australia.
Hensley, M.J. (1999). Railroad HMA Project Review, Asphalt Institute.
Kiefer, A. S. (1998). “Use of Hot Mix Asphalt in Maintenance and Track Construction,” Proceedings of Roadbed Stabilization and Ballast Symposium, AREMA,Ypsilanti, Michigan, pp.11-20.
Lopresti, J., and Li, D. (2005). Long-Term Performance of Hot -Mix Asphalt Over Subgrade at FAST, Work Performed by a Subsidiary of the Association of American Railroads, Technology Digest-Timely Technology Transfer, TD-05-035.
Rose, J.G., and Drnevich, V.P. (1984). “Hot Mix Asphalt for Railroad Trackbeds -Construction Performance and Verview,” Proceedings of Association of Asphalt Paving Technologists Technical Session, Vol. 53, pp.19-50.
Rose, J.G., and Hensley, M.J. (1991). “Performance of Hot -Mix -Asphalt Railroad Trackbeds,” Transportation Research Record 1300, pp.35-44.
Rose, J.G. (1998). Hot Mix Asphalt for Quality Railroad and Transit Trackbeds, Information Series IS-137, Asphalt Institute, Kentucky.
Rose, J.G., Brown, E.R., and Osborne, M.L. (2000). “Asphalt Trackbed Technology Development-The First 20 Years,” Transportation Research Record 1713, pp.1-9.
Rose, J.G., MSCE, B.S., and EIT, W.L. (2002). KENTRACK:A Railway Trackbed Structural Design and Analysis Program, Kentucky.
Rose, J.G. (2003). Asphalt Underlayment Trackbed for Special Trackwork Applications and Long-term Performances, Asphalt Institute, Kentucky.
Teixeira, P.F., Pita, A.L., Esplugas, C.C., and Bachiller, A. (2005). “
Optimization of High-Speed Ballasted Tracks:The Interest of Using a Bituminous Sub-ballast Layer,” Transportation Research Board 2005 Annual Meeting (on CD-ROM).