簡易檢索 / 詳目顯示

研究生: 李宸宇
Lee, Chen-Yu
論文名稱: 克里金模型最佳化硝酸鉀活化木屑製備活性碳及其在超級電容之應用
Optimization of Potassium Nitrate Activated Sawdust for Activated Carbon Preparation Using Kriging Model and Its Application to Supercapacitors
指導教授: 吳志勇
Wu, Chih-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程國際碩博士學位學程
International Master/Doctoral Degree Program on Energy Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 111
中文關鍵詞: 木屑活性碳硝酸鉀化學活化超級電容生物質
外文關鍵詞: sawdust, activated carbon, potassium nitrate, chemical activation, supercapacitors, biomass
相關次數: 點閱:29下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將木屑作為活性碳前驅物,選用硝酸鉀作為活化劑,利用熱分解會產生大量氣體之特性,進行碳化與活化,製備出高比表面積及孔隙率的活性碳。活性碳製備流程包含木屑前處理、碳化與活化以及後處理,並改變活化劑的比例、鍛燒升溫速率和鍛燒溫度來探討各個實驗參數對活性碳的影響,其中加入克里金模型優化實驗過程,減少實驗組數,精確預測數據結果,有效率地製備出高比表面積的活性碳。
    活性碳樣品將利用SEM、TEM、XRD、元素分析、氮氣等溫吸脫附曲線、拉曼光譜法和XPS等方法,分析不同的活化劑比例和鍛燒溫度對於活性碳物理化學性質的影響。克里金模型預測結果顯示,活化劑比例1.6g/g、鍛燒升溫速率20°C/min和鍛燒溫度900°C時,活性碳比表面積能夠高達2326.59m^2/g,而實際實驗比表面積為2548.41m^2/g,誤差值約為8.7%,代表克里金模型在本研究中具高度準確性及可靠性。
    本研究選用最高比表面積及孔體積的活性碳製備成電雙層超級電容,並透過循環伏安法、電化學交流阻抗頻譜和恆電流充放電進行電性分析。結果顯示,具有高比電容(157.8 F/g)和能量密度(39.94 Wh/kg),且在經過5000次的充放電循環壽命測試後,仍擁有約80%的電容保留率。

    This study utilized wood sawdust as the precursor material for activated carbon, with potassium nitrate (KNO₃) employed as the activating agent. By leveraging the characteristic of potassium nitrate to release substantial amounts of gas during thermal decomposition, the processes of carbonization and activation were executed to synthesize activated carbon with superior specific surface area and porosity. The preparation procedure encompassed sawdust pretreatment, carbonization and activation, as well as post-treatment steps. Experimental parameters, including the activating agent ratio, calcination heating rate, and calcination temperature, were systematically varied to examine their impacts on the properties of the resulting activated carbon. Additionally, a Kriging model was applied to optimize the experimental process, reduce the number of experimental trials, and accurately predict outcomes, successfully producing activated carbon with a high specific surface area.
    Characterization of the activated carbon samples was performed using SEM, TEM, XRD, elemental analysis, nitrogen adsorption-desorption isotherms, Raman spectroscopy, and XPS to investigate the influence of activating agent ratio and calcination temperature on their physicochemical properties. The Kriging model predicted that an activating agent ratio of 1.6 g/g, a calcination heating rate of 20°C/min, and a calcination temperature of 900°C would yield an activated carbon with a specific surface area of 2326.59 m²/g. The experimentally measured specific surface area was 2548.41 m²/g, resulting in a prediction error of approximately 8.7%, thereby demonstrating the high accuracy and reliability of the Kriging model in this study.
    The activated carbon with the highest specific surface area and pore volume was subsequently fabricated into an electric double-layer supercapacitor. Electrochemical analyses, including cyclic voltammetry, electrochemical impedance spectroscopy, and constant current charge-discharge tests, revealed excellent performance, with a specific capacitance of 157.8 F/g and an energy density of 39.94 Wh/kg. Furthermore, after 5000 charge-discharge cycles, the supercapacitor retained approximately 80% of its initial capacitance, underscoring its outstanding cyclic stability.

    摘要 ii Extended Abstract iv 圖目錄 xlvii 表目錄 l 第1章 前言 1 第2章 文獻回顧 3 2-1 活性碳 3 2-2 活性碳之前驅物 4 2-3 活性碳製備方法 5 2-4 超級電容 8 2-5 代理模型 10 2-6 研究動機與目的 12 第3章 實驗設備與方法 13 3-1 實驗藥品與設備 13 3-2 實驗方法 14 3-3 實驗設計 17 3-4 活性碳分析 19 3.4.1 產率/碳轉化率 19 3.4.2 掃描式電子顯微鏡 19 3.4.3 穿透式電子顯微鏡 20 3.4.4 X射線繞射 20 3.4.5 元素分析 21 3.4.6 氮氣等溫吸脫附曲線 21 3.4.7 拉曼光譜法 23 3.4.8 X射線光電子能譜儀 24 3-5 電化學分析 24 3.5.1 循環伏安法 24 3.5.2 電化學阻抗頻譜 25 3.5.3 恆電流充放電 26 第4章 實驗結果與討論 29 4-1 活性碳性質分析 29 4.1.1 產率/碳轉化率 29 4.1.2 SEM表面形貌分析 30 4.1.3 TEM微觀結構分析 32 4.1.4 XRD圖譜分析 33 4.1.5 元素分析 34 4.1.6 氮氣等溫吸脫附曲線 35 4.1.7 孔徑分佈圖 36 4.1.8 拉曼光譜分析 37 4.1.9 X射線光電子能譜儀分析 39 4-2 建立基礎克里金模型 43 4-3 優化Kriging模型 44 4-4 各參數對實驗結果影響之分析 45 4.4.1 活化劑比例對於活性碳比表面積之影響 45 4.4.2 鍛燒升溫速率對於活性碳比表面積之影響 46 4.4.3 鍛燒溫度對於活性碳比表面積之影響 47 4-5 最佳實驗參數及結果 48 4-6 超級電容之電性分析 49 4.6.1 CV循環伏安法 49 4.6.2 EIS電化學阻抗頻譜分析 50 4.6.3 GCD恆電流充放電分析 50 4.6.4 超級電容之循環壽命 51 4.6.5 超級電容之電性分析結果 52 第5章 結論 54 參考文獻 55

    [1] Zhou J, Zhang S, Zhou Y-N, Tang W, Yang J, Peng C, et al. Biomass-derived carbon materials for high-performance supercapacitors: current status and perspective. Electrochemical Energy Reviews 2021;4:219-48.
    [2] Mei B-A, Munteshari O, Lau J, Dunn B, Pilon L. Physical interpretations of Nyquist plots for EDLC electrodes and devices. The Journal of Physical Chemistry C 2018;122(1):194-206.
    [3] Arumugam B, Mayakrishnan G, Subburayan Manickavasagam SK, Kim SC, Vanaraj R. An overview of active electrode materials for the efficient high-performance supercapacitor application. Crystals 2023;13(7):1118.
    [4] Bian Z, Wang H, Zhao X, Ni Z, Zhao G, Chen C, et al. Optimized mesopores enable enhanced capacitance of electrochemical capacitors using ultrahigh surface area carbon derived from waste feathers. Journal of Colloid and Interface Science 2023;630:115-26.
    [5] Bansal RC, Goyal M. Activated carbon adsorption. CRC press; 2005.
    [6] Rodriguez-Reinoso F, Molina-Sabio M. Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon 1992;30(7):1111-8.
    [7] Everett DH. Manual of symbols and terminology for physicochemical quantities and units, appendix II: Definitions, terminology and symbols in colloid and surface chemistry. Pure and Applied Chemistry 1972;31(4):577-638.
    [8] Liu C, Li Q, Kang W, Lei W, Wang X, Lu C, et al. Structural design and mechanism analysis of hierarchical porous carbon fibers for advanced energy and environmental applications. Journal of Materials Chemistry A 2022;10(1):10-49.
    [9] Carrott P, Carrott MR. Lignin–from natural adsorbent to activated carbon: a review. Bioresource technology 2007;98(12):2301-12.
    [10] Marsh H, Reinoso FR. Activated carbon. Elsevier; 2006.
    [11] Liu Q-S, Zheng T, Wang P, Guo L. Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Industrial crops and products 2010;31(2):233-8.
    [12] Ioannidou O, Zabaniotou A. Agricultural residues as precursors for activated carbon production—A review. Renewable and sustainable energy reviews 2007;11(9):1966-2005.
    [13] Gong Y, Li D, Luo C, Fu Q, Pan C. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chemistry 2017;19(17):4132-40.
    [14] Yan Q, Li J, Cai Z. Preparation and characterization of chars and activated carbons from wood wastes. Carbon Letters 2021;31:941-56.
    [15] Puri L, Hu Y, Naterer G. Critical review of the role of ash content and composition in biomass pyrolysis. Frontiers in Fuels 2024;2:1378361.
    [16] Guo J, Lua AC. Textural and chemical characterisations of activated carbon prepared from oil-palm stone with H2SO4 and KOH impregnation. Microporous and mesoporous materials 1999;32(1-2):111-7.
    [17] Ateş F, Özcan Ö. Preparation and characterization of activated carbon from poplar sawdust by chemical activation: comparison of different activating agents and carbonization temperature. European Journal of Engineering and Technology Research 2018;3(11):6-11.
    [18] Mahmoudi K, Hamdi N, Srasra E. Preparation and characterization of activated carbon from date pits by chemical activation with zinc chloride for methyl orange adsorption. J Mater Environ Sci 2014;5(6):1758-69.
    [19] Li W, Yang K, Peng J, Zhang L, Guo S, Xia H. Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Industrial crops and products 2008;28(2):190-8.
    [20] Nazem MA, Zare MH, Shirazian S. Preparation and optimization of activated nano-carbon production using physical activation by water steam from agricultural wastes. RSC advances 2020;10(3):1463-75.
    [21] Daffalla SB, Mukhtar H, Shaharun MS. Properties of activated carbon prepared from rice husk with chemical activation. International journal of global environmental issues 2012;12(2-4):107-29.
    [22] Ukanwa KS, Patchigolla K, Sakrabani R, Anthony E, Mandavgane S. A review of chemicals to produce activated carbon from agricultural waste biomass. Sustainability 2019;11(22):6204.
    [23] Hui TS, Zaini MAA. Potassium hydroxide activation of activated carbon: a commentary. Carbon letters 2015;16(4):275-80.
    [24] Raymundo-Pinero E, Azaïs P, Cacciaguerra T, Cazorla-Amorós D, Linares-Solano A, Béguin F. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 2005;43(4):786-95.
    [25] Li Y, Liang Y, Hu H, Dong H, Zheng M, Xiao Y, et al. KNO3-mediated synthesis of high-surface-area polyacrylonitrile-based carbon material for exceptional supercapacitors. Carbon 2019;152:120-7.
    [26] Freeman ES. The kinetics of the thermal decomposition of potassium nitrate and of the reaction between potassium nitrite and oxygen1a. Journal of the American Chemical Society 1957;79(4):838-42.
    [27] Sharma K, Arora A, Tripathi SK. Review of supercapacitors: Materials and devices. Journal of Energy Storage 2019;21:801-25.
    [28] Lemian D, Bode F. Battery-supercapacitor energy storage systems for electrical vehicles: a review. Energies 2022;15(15):5683.
    [29] Lamba P, Singh P, Singh P, Singh P, Kumar A, Gupta M, et al. Recent advancements in supercapacitors based on different electrode materials: classifications, synthesis methods and comparative performance. Journal of Energy Storage 2022;48:103871.
    [30] Luo L, Lan Y, Zhang Q, Deng J, Luo L, Zeng Q, et al. A review on biomass-derived activated carbon as electrode materials for energy storage supercapacitors. Journal of Energy Storage 2022;55:105839.
    [31] Sharma P, Bhatti T. A review on electrochemical double-layer capacitors. Energy conversion and management 2010;51(12):2901-12.
    [32] Bhojane P. Recent advances and fundamentals of Pseudocapacitors: Materials, mechanism, and its understanding. Journal of Energy Storage 2022;45:103654.
    [33] Muzaffar A, Ahamed MB, Deshmukh K, Thirumalai J. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renewable and sustainable energy reviews 2019;101:123-45.
    [34] Pershaanaa M, Bashir S, Ramesh S, Ramesh K. Every bite of Supercap: A brief review on construction and enhancement of supercapacitor. Journal of Energy Storage 2022;50:104599.
    [35] Alizadeh R, Allen JK, Mistree F. Managing computational complexity using surrogate models: a critical review. Research in Engineering Design 2020;31(3):275-98.
    [36] Palar PS, Liem RP, Zuhal LR, Shimoyama K. On the use of surrogate models in engineering design optimization and exploration: The key issues. Proceedings of the genetic and evolutionary computation conference companion. 2019:1592-602.
    [37] Moustapha M, Bourinet J-M, Guillaume B, Sudret B. Comparative study of Kriging and support vector regression for structural engineering applications. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering 2018;4(2):04018005.
    [38] Marrel A, Iooss B. Probabilistic surrogate modeling by Gaussian process: A review on recent insights in estimation and validation. Reliability Engineering & System Safety 2024:110094.
    [39] Paciorek C, Schervish M. Nonstationary covariance functions for Gaussian process regression. Advances in neural information processing systems 2003;16.
    [40] Banerjee S, Gelfand AE, Finley AO, Sang H. Gaussian predictive process models for large spatial data sets. Journal of the Royal Statistical Society Series B: Statistical Methodology 2008;70(4):825-48.
    [41] Byeong-Hyeon J, Tae-Min C, Do-Hyun J. An error assessment of the Kriging based approximation model using a mean square error. Transactions of the Korean Society of Mechanical Engineers A 2006;30(8):923-30.
    [42] Sevilla M, Mokaya R. Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy & Environmental Science 2014;7(4):1250-80.
    [43] Goldfarb JL, Dou G, Salari M, Grinstaff MW. Biomass-based fuels and activated carbon electrode materials: An integrated approach to green energy systems. ACS Sustainable Chemistry & Engineering 2017;5(4):3046-54.
    [44] Kleijnen JP. Regression and Kriging metamodels with their experimental designs in simulation: A review. European Journal of Operational Research 2017;256(1):1-16.
    [45] Krishnaiah K, Shahabudeen P. Applied design of experiments and Taguchi methods. PHI Learning Pvt. Ltd.; 2012.
    [46] Angın D, Altintig E, Köse TE. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresource Technology 2013;148:542-9.
    [47] Panwar NL, Pawar A. Influence of activation conditions on the physicochemical properties of activated biochar: A review. Biomass Conversion and Biorefinery 2020:1-23.
    [48] Alzaid M, Alsalh F, Iqbal MZ. Biomass derived activated carbon based hybrid supercapacitors. Journal of Energy Storage 2021;40:102751.
    [49] ALOthman ZA. A review: fundamental aspects of silicate mesoporous materials. Materials 2012;5(12):2874-902.
    [50] Swenson H, Stadie NP. Langmuir’s theory of adsorption: A centennial review. Langmuir 2019;35(16):5409-26.
    [51] Lastoskie C, Gubbins KE, Quirke N. Pore size distribution analysis of microporous carbons: a density functional theory approach. The journal of physical chemistry 1993;97(18):4786-96.
    [52] Ban FY, Jayabal S, Lim HN, Lee HW, Huang NM. Synthesis of nitrogen-doped reduced graphene oxide-multiwalled carbon nanotube composite on nickel foam as electrode for high-performance supercapacitor. Ceramics International 2017;43(1):20-7.
    [53] Lan X, Jiang X, Song Y, Jing X, Xing X. The effect of activation temperature on structure and properties of blue coke-based activated carbon by CO2 activation. Green Processing and Synthesis 2019;8(1):837-45.
    [54] Beyssac O, Goffé B, Petitet J-P, Froigneux E, Moreau M, Rouzaud J-N. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2003;59(10):2267-76.
    [55] Yuan R, Shang L, Zhang J, Jiang Z, Liu X, Li A, et al. Boosting the high-temperature graphitization of non-graphitizable carbons by ball-milling. Carbon 2024:119334.
    [56] Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005;43(8):1731-42.
    [57] Qiu C, Jiang L, Gao Y, Sheng L. Effects of oxygen-containing functional groups on carbon materials in supercapacitors: A review. Materials & Design 2023;230:111952.
    [58] Madan C, Kumari S, Halder A. Metal Oxides for Future Electrochemical Energy Storage Devices: Batteries and Supercapacitors. Optical Properties of Metal Oxide Nanostructures. Springer; 2023, p. 291-330.
    [59] Yang L, Feng Y, Cao M, Yao J. Two-step preparation of hierarchical porous carbon from KOH-activated wood sawdust for supercapacitor. Materials chemistry and physics 2019;238:121956.
    [60] Wahid M, Puthusseri D, Phase D, Ogale S. Enhanced capacitance retention in a supercapacitor made of carbon from sugarcane bagasse by hydrothermal pretreatment. Energy & fuels 2014;28(6):4233-40.
    [61] Taer E, Deraman M, Talib I, Awitdrus A, Hashmi S, Umar A. Preparation of a highly porous binderless activated carbon monolith from rubber wood sawdust by a multi-step activation process for application in supercapacitors. International journal of electrochemical science 2011;6(8):3301-15.
    [62] Bhat VS, Kanagavalli P, Sriram G, John NS, Veerapandian M, Kurkuri M, et al. Low cost, catalyst free, high performance supercapacitors based on porous nano carbon derived from agriculture waste. Journal of Energy Storage 2020;32:101829.
    [63] Hei J, Su L, Chen S, Ye W, Zhan J, Wang L, et al. Enlarging surface/bulk ratios of NiO nanoparticles toward high utilization and rate capability for supercapacitors. Particle & Particle Systems Characterization 2020;37(1):1900344.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE