| 研究生: |
陸振原 Lu, Chen-Yuan |
|---|---|
| 論文名稱: |
機車液壓防鎖死煞車模組設計與系統控制之研究 Design and Control of the Hydraulic Anti-lock Brake System for a Light Motorcycle |
| 指導教授: |
施明璋
Shih, Ming-Chang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 146 |
| 中文關鍵詞: | 輪胎模式 、防鎖死煞車 、控制邏輯 、機車 |
| 外文關鍵詞: | motorcycle, control logic, tyre model, anti-lock brake |
| 相關次數: | 點閱:78 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文欲應用液壓防鎖死煞車系統於機車,首先設計適合機車用之液壓防鎖死煞車模組,以可使防鎖死煞車模組體積小型化之容積調變式系統為設計方向,衍生出由電動馬達驅動之凸輪式、螺桿式、常開式、嵌入式,四組機車用液壓防鎖死煞車模組。
本文針對機車液壓防鎖死煞車系統性能測試,建立三組實驗裝置,分別為即時硬體模擬器、動態測試實驗台、實車路試車輛。即時硬體模擬器乃透過機車運動數學模式與輪胎模式之建立,以程式模擬虛擬車輛,配合I/O介面裝置,與液壓防鎖死煞車模組結合,進行機車液壓防鎖死煞車系統控制。為建立輪胎模式,而進行輪胎煞車黏著力之量測。並發現貝斯卡輪胎模式無對速度與輪胎黏著力關係之描述,進而將其輪胎模式推廣,以黏著力量測實驗之數據,配合遺傳基因演算法鑑定出之參數值,描述輪胎黏著力隨速度之變化。
液壓防鎖死煞車系統之控制器,可分為決定控制命令之控制邏輯與驅使系統追蹤該控制命令之控制法則。防鎖死煞車系統常見之控制邏輯為滑差、車輪角速度、煞車壓力等。防鎖死煞車系統製造商採用之控制邏輯常仰賴大量的經驗法則,而滑差之量測則受限於感測器成本以及路面跳動等因素之影響,且機車具大傾斜角及騎士重心可移動等特性,使傳統控制邏輯之應用不易,故本文提出智慧型煞車壓力控制邏輯之設計,並配合機車用之液壓防鎖死煞車模組,進行即時硬體模擬與於動態測試實驗台、實車路試車輛之性能測試,以驗證本文之液壓防鎖死煞車系統。
The objective of the study is to apply the ABS to motorcycle by re-design the anti-lock brake module. The volume-adjustable type ABS is adopted by its possibility of miniaturization. Four anti-lock brake modules driven by electric-motor are developed for motorcycle in this study.
The real-time hardware-in-the-loop (HIL) simulator, dynamic test stand and on-road test vehicle are set up for the motorcycle ABS performance test. The real-time HIL simulator is composed of the hardware part (anti-lock brake module), the I/O part (I/O card) and the software part (motorcycle kinematics and tyre model) to build the virtual vehicle. The tyre model is identified from the test data of the tyre adhesive force measurement referred to the Pacejka magic formula tyre model (MFTM). The relationship between the vehicle velocity and the tyre adhesive coefficients is described from the extension of the MFTM.
The controller of the ABS is composed of the control logic for the determination of the commands to the ABS controller and the control rule for the tracing of the commands. The common physical variables utilized in the ABS control logic: are slip ratio, wheel angular velocity, brake pressure and so on. The control logics of the ABS manufacturers usually are based experiences obtained from large amount of experiments. The calculation of the slip ratio may be influenced by a rough road surface and limited on its cost of the instrument. The characteristics of motorcycle are large camber angle and the motion of the rider. To overcome these limitations and influences, an intelligent brake pressure control logic is designed in the study. A real-time HIL simulator, a dynamic test stand and an on-road test vehicle are set up to prove the performance of the hydraulic anti-lock brake module.
1. 吳銘欽, “汽車防鎖死煞車系統控制之研究”, 國立成功大學機械工程研究所博士論文, 2002.
2. Takeshi W., Takushi M., Kazhuiko T. and Atsuo O., “Development of motor actuated antilock brake system for light weight motorcycle”, JSAE Review, Vol. 19, No. 4, pp. 373-377, 1998.
3. “汽車用防鎖死煞車系統”, 中華民國經濟部標準檢驗局, 標準總號14343, 類號D2201, 民國88年.
4. Dugoff H., Fancher P.S. and Segel L., “An Analysis of Tire Traction Properties and their Influence on Vehicle Dynamic Performance”, SAE Paper No. 700377, 1970.
5. Pacejka H.B. and Bakker E., “The Magic Formula Tyre Model”, Vehicle System Dynamics, Vol. 21, No. Suppl, pp. 1-18, 1993.
6. Zanten A., Erhardt R. and Lutz A., “Measurement and Simulation of Transients in Longitudinal and Lateral Tire forces”, SAE Transactions, Vol. 99, No. Sect 6, pp. 300-318, 1990
7. Pacejka H.B. and Besselink I.J.M., “Magic Formula Tyre Model with Transient Properties”, Vehicle System Dynamics, Vol. 27, No. Suppl, pp. 234-249, 1997.
8. Miennert R.J., “Antilock Brake system Application to a Motorcycle Front Wheel”, SAE Paper No.740630, 1974.
9. Cart J., “An anti-lock braking system for motorcycles”, IMechE Conference Publications (Institution of Mechanical Engineers), pp. 127-138, 1985.
10. Donne G.L., “Development of Anti-Locking Brakes for Motorcycles at the Transport and Road Research Laboratory”, IMechE Conference Publications (Institution of Mechanical Engineers), pp. 45-53, 1985
11. Zellner J.W., “An Analytical Approach to Antilock Brake System Design”, SAE Paper No.840249, 1984.
12. Grimm A., “Development of Anti-Lock Braking Regulations in the UK”, IMechE Conference Publications (Institution of Mechanical Engineers), pp. 73-77, 1985.
13. Hikichi T., Tomari T, Katoh M. and Thiem M., “Research on motorcycle antilock brake system - Part 2. Influence on motorcycle braking in turn”, Proceedings - International Symposium on Automotive Technology & Automation, Vol. 3, pp. 55-62, 1990.
14. Djoko S. and Rafik A.A., “Development of brake simulator”, Proceedings of the 6th International Pacific Conference on Automotive Engineering, pp. 365-370, 1991.
15. Masaie K., Takushi M., Keishin T., Hiroshi I., Tatsuo H. and Wasaku H., “Combination of antilock brake system (ABS) and combined brake system (CBS) for motorcycles”, SAE Special Publications, No. 1142, pp. 59, 1996.
16. Cabrera J.A., Ortiz A., Simon A., Garcia F. and Perez De La blanca A., “A versatile flat track tire testing machine”, Vehicle System Dynamics, Vol. 40, No. 4, pp. 271-284, 2003.
17. Limebeer D.J.N., Sharp R.S., Evangelou S., “The stability of motorcycles under acceleration and braking”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 215, No. 9, pp. 1095-1110, 2001.
18. Weidele A. and Schmieder M., ”Research on the power transfer of motorcycle tyres on real road surfaces”, Proceedings - Society of Automotive Engineers, pp. 715-720, 1990.
19. Sato T., “Antilock Brake Control System for a Motorcycle Front Wheel”, U.S. Patent No. 4123118, 1978.
20. Hayashi T. and Inoue H., “Fluid Brake System for a Motorcycle”, U.S. Patent No. 4626038, 1986.
21. Pickenhahn J., Weidele A., and Fischer M., “Method of anti-lock braking of a motorcycle and of determining the coefficient of adhesion”, U.S. Patent No. 5244259, 1993.
22. Roll G., Ohm, H.F. and Hauser B., “Anti-lock control system for motorcycles”, U.S. Patent No. 5344220, 1994.
23. Roll G., Ohm, H.F. and Hauser B., “Method of regulating the braking force of motorcycles”, U.S. Patent No. 5386366, 1995.
24. Hauser B., Ohm H.F. and Roll G., “Motorcycle ABS using horizontal and vertical acceleration sensors”, U.S. Patent No. 5445443, 1995.
25. Takeshi W. and Kazuhiko T., “Brake assembly for a motorcycle”, U.S. Patent No. 6273523, 2001.
26. Yeh E-C., Kuo C-Y. and Sun P-L., ”Conjugate boundary method for control law design of anti-skid brake systems”, International Journal of Vehicle Design, Vol.11, No. 1, pp. 40-62, 1990.
27. 葉莒, 王俊堯, “鎖相迴路式伺服型防滑煞車系統”, 中華民國新型專利第205084號, 民國81年.
28. Yeh E-C. and Day G-C., ”Parametric study of anti-skid brake systems using Poincare map concept”, International Journal of Vehicle Design, Vol. 13, No. 3, pp. 210-232, 1992.
29. Yeh E-C., Roan G-K. and Yun, I-H., “Development of an anti-lock brake system for motorcycle”, Vehicle System Dynamics, Vol. 24, No. 4-5, pp. 427-444, 1995.
30. 陳志鏗, 毛彥傑, “防滑煞車系統液壓節流機構”, 中華民國新型專利第404378號, 民國87年.
31. 陳志鏗, “機車ABS煞車系統之油路控制裝置”, 中華民國新型專利第437641號, 民國89年.
32. 陳志鏗, “機車用自動防鎖死煞車系統之油路控制裝置”, 中華民國新型專利第491246號, 民國90年.
33. 杜明德, 陳志鏗, “防滑煞車系統液壓調節裝置”, 中華民國新型專利第497570號, 民國90年.
34. 陳志鏗, “主動式煞車液壓調節機構”, 中華民國新型專利第577417號, 民國91年.
35. Chen C-K. and Wu J-D., “Development of fuzzy controlled ABS systems for motorcycles”, International Journal of Vehicle Design, Vol. 34, No. 1, pp. 84-100, 2004.
36. Chen P-H., Hwu L-C. and Juang P-A., “Hydraulic anti-locking brake system for motorcycle”, U.S. Patent No. 6715848, 2004.
37. 胡奉麟, “液壓式與機構式機車防滑煞車系統之實驗研究”, 經濟部八十七年度民營事業科技專案—機車防滑煞車系統及電子點火系統技術開發三年計畫—第二年度學界/業界期末研究成果研討會, 民國90年.
38. 朱賢明, “汽車油壓煞車系統之性能分析與實驗研究”, 國立成功大學機械工程研究所碩士論文, 民國84年.
39. 李連春, “液壓防止鎖死煞車系統控制器設計之研究”, 國立成功大學機械工程學系碩士論文, 民國86年.
40. 張瑞宗, “模糊脈寬調變控制液壓防鎖死煞車系統之研究”, 國立成功大學機械工程學系碩士論文, 民國89年.
41. 陸振原, “機車防鎖死煞車系統之設計與性能研究”, 國立成功大學機械工程學系碩士論文, 民國89年.
42. Jack E., “Anti-Lock Brake Systems”, Delmar Publishers, 1996.
43. Manfred B., “Fahrwerktechnik: Bremsdynamik und Pkwbremsanlagen”, Vogel Verlag und Druck KG, 1991.
44. 施明璋, 陸振原, 張森憲, “機車ABS煞車裝置之改良”, 中華民國新型專利第465504號, 民國89年.
45. 施明璋, 陸振原, “機車用液壓防鎖死煞車系統之改良”, 中華民國新型專利第492439號, 民國90年.
46. 施明璋, 陸振原, “機車液壓防鎖死煞車系統”, 中華民國新型專利第566387號, 民國91年.
47. 徐孟輝, “變轉速平板凸輪系統之研究”, 國立成功大學機械工程研究所博士論文, 民國87年。
48. Merritt H.E., “Hydraulic Control System”, John Wiley & Sons, Inc., 1967
49. Fabris A.G. et al., “Cam Modulator for Anti-Lock Braking System apparatus and Method”, U.S. Patent No.5071202, 1991.
50. Matouka M.F. et al., “Anti-Lock Braking System”, U.S. Patent No. 5211455, 1993.
51. Lee S.-J., Kim Y.-J. and Park K., “Development of Hardware-In-the-Loop Simulation System and Validation of its Vehicle Dynamic Model for Testing Multiple ABS and TCS Modules”, 7th International Symposium on Advanced Vehicle Control, pp. 833-838, 2004.
52. Chr. von Holst and G hlich H., “The System Tractor – tire under the Influence of Tractor Development”, Vehicle System dynamics, Vol. 27, No. Suppl, pp. 330-334, 1997.
53. 陳喜棠, 馬志欽, “百器構造圖解”, 財團法人徐氏基金會, 民國87年.
54. Choi S.-G. and Cho D.-W., “Design of Nonlinear Sliding Mode Controller with Pulse Width Modulation for Vehicle Slip Ratio Control”, Vehicle System Dynamics, Vol. 36, No. 1, pp. 57-72, 2001.
55. Guo K. and Liu Q., “Modeling and Simulation of Non-Steady State Cornering Properties and Identification of Structure Parameters of Tyre”, Vehicle System Dynamics, Vol. 27, No. Suppl, pp. 80-93, 1997.
56. Holmes K.E. and Stone R.D., “Tyre Forces as Functions of Cornering and Braking Slip on Wet Road Surface”, Great Britain, Ministry of Transport-Road Research Laboratory-Report LR 254, 1969.
57. 茄子川捷久, 宮下義孝, 汐川滿則, “汽車行駛性能與測試法”, 台灣復文興業, 賴耿陽編譯,民國84年.
58. Bayle P., Forissier J.F. and Lafon S., “A new tyre model for vehicle dynamics simulations”, Automative Technology International’93, pp. 193-198, 1993.
59. Vetturi D., Gadola M., Manzo L. and Faglia R., “Genetic Algorithm for Tyre Model Identification in Automotive Dynamics Studies”, 29th International Symposium on Automotive Technology and Automation (ISATA), 1996.
60. Pasterkamp W.R. and Pacejka H.B., “The Tyre as a Sensor to Estimate Friction”, Vehicle System Dynamics, Vol. 27, pp. 409-422, 1997.
61. Yi K., Hedrick K. and Lee S.-C., “Estimation of Tire-Road Friction Using Observer Based Identifiers”, Vehicle System Dynamics, Vol. 31, pp. 233-261, 1999.
62. Liu C.-S. and Peng H., “Road Friction Coefficient Estimation for Vehicle Path Prediction”, Vehicle System Dynamics, Vol. 25, No. Suppl, pp. 413-425, 1996.
63. Zadeh L.A., “Fuzzy set”, Inform. Control, Vol. 8, pp. 338-353, 1965.
64. Zadeh L.A., “Toward a Theory of Fuzzy Systems”, NASA CR-1432, 1969.
65. Dubois D.J. and Prade H.M., “Various Kinds of Interactive Addition of Fuzzy Numbers. Application to Decision Analysis in Presence of Linguistic Probabilities”, Proceedings of the IEEE Conference on Decision and Control, Vol. 2, pp. 783-787, 1979.
66. Lin C.-M. and Hsu C.-F., “Self-learning fuzzy sliding-mode control for antilock braking systems”, Transactions on Control Systems Technology, Vol. 11, No. 2, pp. 273-278, 2003.
67. Wang W.-Y., Hsu K.-C., Lee T.-T. and Chen G.-M., “Robust Sliding Mode-Like Fuzzy Logic Control for Anti-Lock Braking Systems with Uncertainties and Disturbances”, International Conference on Machine Learning and Cybernetics, Vol. 1, pp. 633-638, 2003.
68. Guntur R.R. and Ouwerkerk H., “Adaptive Brake Control System”, Proceedings of the Institution of Mechanical Engineering, Vol. 186, No. 68/72, pp. 855-880, 1972.
69. Mamdani E.H., “Application of Fuzzy Algorithms for Control of Simple Dynamic Plant”, Proceedings of the Institution of Electrical Engineers, Vol. 121, No. 12, pp. 1585-1588, 1974.
70. Slotine J.-J. E, “Sliding Controller Design for Non-Linear Systems”, International Journal of Control, Vol. 40, No. 2, pp. 421-434, 1984.
71. Slotine J.-J. E. and Li W.-P., “Applied NonLinear Control”, Prentice-Hall International Inc., 1991.
72. Wu M.-C. and Shih M.-C., “Hydraulic anti-lock braking control using the hybrid sliding-mode pulse width modulation pressure control method”, Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, Vol. 215, No. 2, pp. 177-187, 2001.
73. Masao W. and Noboru N., “New algorithm for ABS to compensate for road-disturbance”, SAE (Society of Automotive Engineers) Transactions, Vol. 99, No. Sect 6, pp. 271-279, 1990.
74. William P.-L., “Hybrid Modelling and Limit Cycle Analysis for a Class of Anti-lock Brake Algorithms”, 7th International Symposium on Advanced Vehicle Control, pp. 245-250, 2004.
75. Chen F.-W. and Liao T.-L., “Nonlinear linearization controller and genetic algorithm-based fuzzy logic controller for ABS systems and their comparison”, International Journal of Vehicle Design, Vol. 24, No. 4, pp. 334-349, 2000.
76. Johansen T.A., Kalkkuhl J., Ludemann J. and Petersen I., “Hybrid control strategies in ABS”, Proceedings of the American Control Conference, Vol. 2, pp. 1704-1705, 2001.
77. Hoffmann M., Fischer E. and Richter B., “The Incorporation of Tire Models Into Vehicle Simulations”, Vehicle System Dynamics, Vol. 21, No. Suppl, pp. 49-57, 1993.
78. Fancher P., Bernard J., Clover C. and Winkler C., “Representing Truck Tire Characteristics in Simulations of Braking and Braking-in-a-turn Maneuvers”, Vehicle System Dynamics, Vol. 27, No. Suppl, pp. 234-249, 1997.