| 研究生: |
溫馨 Wen, Hsin |
|---|---|
| 論文名稱: |
智慧型建築最佳化運轉模式之研究-以中台灣創新園區為例 A Study On The Optimization Of Intelligent Building Operations Based On Case Study Of The Industrial Innovation Center In Taiwan |
| 指導教授: |
曾俊達
Tzeng, Chun-Ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 智慧型建築 、運轉模式 |
| 外文關鍵詞: | Intelligent building, Optimal operation model |
| 相關次數: | 點閱:82 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在面對氣候變遷,全球暖化的大環境趨勢下,「建築」已成為繼工業部門後最具減碳潛力的產業。歷年來多次世界能源危機及全球氣候異變日趨劇烈,無疑是地球對於人類濫用能源的警告。而面對這些危機與異變,世界各國無不揭竿推動節能減碳相關對策及措施。以建築管理的角度,智慧建築不僅系統設備的本身的智慧化,亦需要透過相互整合連動管理,以達到使建築智慧化的目的。除了針對建築整體之效率外,更應以達到顧及使用者身心健康為前提,而後才朝向節能減碳目標邁進。
根據預估在未來10年建築物將會成為全球最大的資源消耗原因,全球商業與住宅建築的能源消耗甚至會達總消耗量的二分之一。不僅僅是建築生產的過程中會產生能源浪費,在設施運轉及維護的過程中更是消耗掉許多資源,為了解決建築的高耗能與高成本的問題,現在可以利用智慧分析操作的方式去提升整體的效率,智慧型建築的運轉模式中涵蓋多種參數,因此為了瞭解各種差異性因素的影響程度,我們需要更進一步的研究,綜合各種量測標準和數據,建立更有效率的智慧型建築基本運轉模式,找出物理環境與人類生理影響的關聯性,在物理與生理參數之間取得平衡點,藉此找出智慧型建築運轉的最佳化模式,利用最低的耗能達到整體的舒適及最大環境效益。在智慧化建築中,將會有許多產品及設備與使用者的舒適及健康息息相關,因此系統效率的提升,及最佳化模式之建立皆應基礎於使用者需求之上。本研究主要目的係希望以建築管理的思維模式,透過科學性方法驗證,探討智慧建築中「健康」、「舒適」、「節能」等議題如何交互影響。因此本研究希望透過維持室內環境品質健康舒適之狀況下,建立出符合「智慧型建築運轉最佳化模式」,並以實際在台灣已取得智慧建築標章之建築案例進行研究與驗證。
The estimation of the next ten years, buildings will become the main reason of resource depletion. The energy consumption of global commerce and residential buildings will be responsible for nearly half of total consumption. To solve issues of high energy consumption and high maintenance costs of the buildings, intelligent analysis methods are now used to increase overall efficiency. The operation models of intelligent buildings encompass many variables, so further research is required to understand the effects of the different factors and characteristics. By combining the various measurement standards and data, a more effective intelligent building operation model may be established to isolate the relativity of the physical environment and humans’ biological effects, and through striking a balance between the physical and biological variables, the optimal operation model for intelligent buildings may be found and allow for the achievement of comfort and maximum environment benefits with the least amount of consumption. In the intelligent buildings, there will be many products and facilities dedicated to the comfort and health of the users, hence improvement of system efficiency and optimal operation model is based on the basic requirements of the users. Therefore, this study hopes to maintain the current conditions of indoor environment quality and comfort and establish “An Optimal Intelligent Building Operation Model” and conduct research and verification on case studies that have obtained the Taiwan Intelligent Building Labels.
1. Vattano, S., Smart Buildings for A Sustainable Development. Economics World, May 2014. Vol. 2, No. 5, 310-324.
2. Arco, J., et al., Management and rebuilding energy of existing buildings: diagnostic and characterization procedure energy from measured data. Revista De La Construccion, 2013. 12(3): p. 9-16.
3. Mark Weiser , P.A.R.C., Xerox, CA, The computer for the 21st century. ACM SIGMOBILE Mobile Computing and Communications Review July 1999 Volume 3 Issue 3.
4. Jia-yi, C., Design and evaluation of Intelligent living space. 2011.
5. 溫琇玲、周鼎金等, 智慧型辦公大樓自動化設備使用狀況評估及法令研究建議. 內政部建築研究所專題研究計畫成果報告, 1993.
6. 許宗熙、楊逸詠等, 智慧型建築基準指標及未來發展方向之研究. 內政部建築研究所專題計劃研究成果報告, 1992.
7. 陳俊源, 智慧建築分級評估系統之研究, in 建築及都市計劃研究所. 2009, 中國文化大學.
8. 溫琇玲、陳素真, 智慧型辦公大樓發包方式與預算科目之研究. 2004.
9. 內政部建築研究所, 智慧建築解說與評估手冊2011年版. 2011.
10. 內政部建築研究所, 智慧化居住空間參考教材. 2012.
11. 內政部建築研究所, 智慧建築評估手冊2016年版. 2016.
12. Tsai, H.H., Global data mining: An empirical study of current trends, future forecasts and technology diffusions. Expert Systems with Applications, 2012. 39(9): p. 8172-8181.
13. Shirota, M., Big Data大數據的獲利模式:圖解.案例.策略.實戰. 2013: 經濟新潮社.
14. 美國大數據分析與儲存技術公司Teradata首席技術長寶立明專訪. 2015, 數位時代.
15. 趙繼海, 大數據時代圖書館面臨的挑戰機遇與對策, in 寧波理工學院. 2012, 浙江大學.
16. 賀桂芬, 德國篇 一片屋頂也能賺錢, in 天下雜誌. 2011.
17. DIGITIMES企劃. 透過Big Data 搭起智慧綠建築應用最後一哩. 智慧電力管理與綠住宅專輯 2014.
18. Krishnan, K., Data Warehousing in the Age of Big Data. 2013: Morgan Kaufmann.
19. 余孝先、趙祖佑, 巨量資料應用,打造資料驅動決策的智慧政府. 2015, 工業技術研究院.
20. U.S. Department of energy, 2011 Building Energy Data Book. March 2012.
21. Luisa F. Cabeza, L.R., Virginia Vilariño,Gabriel Pérez,Albert Castell Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews 2014. 29 (2014) 394–416.
22. Bing Dong, C.C., Siew Eang Lee, Applying support vector machines to predict build-ing energy consumption in tropical region. Energy and Buildings 2005. 37 (2005)545–553.
23. M.R. Amin-Naseri , A.R.S., Combined use of unsupervised and supervised learning for daily peak load forecasting. Energy Conversion and Management, 2008. Volume 49, Issue 6, June 2008, Pages 1302–1308.
24. Ahmed, A., et al., Mining building performance data for energy-efficient operation. Advanced Engineering Informatics, 2011. 25(2): p. 341-354.
25. 財團法人台灣建築中心, 智慧建築標章通過案件一覽表-統計至105年07月30日. 2016.
26. 台灣積體電路製造股份有限公司, 台積公司民國103年度企業社會責任報告書. 2014.
27. Xiao, F. and C. Fan, Data mining in building automation system for improving building operational performance. Energy and Buildings, 2014. 75: p. 109-118.
28. 刘腾红,宋克振,张凯, 經濟信息管理. 2005: 清华大学出版社.
29. Rakesh Agrawal , T.I., Arun Swami, Mining Association Rules between Sets of Items in Large Databases 1993.
30. 簡禎富, 許., 資料挖礦與大數據分析. 2014.
31. 決策樹.
32. Deshpande, B. 4 key advantages of using decision trees for predictive analytics. 2011.
33. Leung, M.C., et al., The use of occupancy space electrical power demand in building cooling load prediction. Energy and Buildings, 2012. 55: p. 151-163.
34. Chen, S.M. and S.M. Bai, Using data mining techniques to automatically construct concept maps for adaptive learning systems. Expert Systems with Applications, 2010. 37(6): p. 4496-4503.
35. Chou, J.S. and D.K. Bui, Modeling heating and cooling loads by artificial intelligence for energy-efficient building design. Energy and Buildings, 2014. 82: p. 437-446.
36. Chou, J.S., Y.C. Hsu, and L.T. Lin, Smart meter monitoring and data mining techniques for predicting refrigeration system performance. Expert Systems with Applications, 2014. 41(5): p. 2144-2156.
37. Gajzler, M., TEXT AND DATA MINING TECHNIQUES IN ASPECT OF KNOWLEDGE ACQUISITION FOR DECISION SUPPORT SYSTEM IN CONSTRUCTION INDUSTRY. Technological and Economic Development of Economy, 2010. 16(2): p. 219-232.
38. Liao, S.H., P.H. Chu, and P.Y. Hsiao, Data mining techniques and applications - A decade review from 2000 to 2011. Expert Systems with Applications, 2012. 39(12): p. 11303-11311.
39. Xu, J.P., K. Sun, and L. Xu, Data mining-based intelligent fault diagnostics for integrated system health management to avionics. Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability, 2015. 229(1): p. 3-15.
40. Yu, J., B.B. Lee, and D. Park, Real-time cooling load forecasting using a hierarchical multi-class SVDD. Multimedia Tools and Applications, 2014. 71(1): p. 293-307.