簡易檢索 / 詳目顯示

研究生: 黃偉昱
Huang, Wei-Yui
論文名稱: 齒間乳突特殊的細胞及分子特性
The Specific Cellular and Molecular Properties of Interdental Papilla
指導教授: 袁國
Yuan, Kuo
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 62
中文關鍵詞: 齒間乳突幹細胞角蛋白19
外文關鍵詞: interdental papilla, stem cell, Keratin 19
相關次數: 點閱:146下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 齒間乳突的缺失,特別是在前牙區,對於牙科團隊來說是相當大的挑戰。這種情形會造成美觀上的缺陷,發音困難,以及食物塞入牙縫中的困擾並且容易造成牙周方面的問題。而造成這種齒間乳突缺失的原因相當多,且不侷限於其中一種因素,包含了牙周病,或經過牙周治療之後,外傷或是其他醫源性的因素。已經有相當多的文獻發表利用軟、硬組織的移植來解決這種問題,但是因為這個區域的血液供應量有限且會進一步危害到移植組織,使得失敗的風險大大增加。然而有時候我們可以發現到在一些由藥物引發或是遺傳性的牙齦增生通常會先發生在齒間乳突,顯示齒間乳突是有容易增生的傾向。這種特徵有可能是因為齒間乳突具有一些特別的細胞或是分子特性。而在先前的文獻中已經發現到齒間乳突相對於邊緣牙齦具有明顯的特殊分子表現(如keratin 19 ,為表皮幹細胞標記),也因此我們想要了解是否齒間乳突含有較多的幹細胞,使其在適當的刺激下容易增生,並且齒間乳突這種特殊的細胞及分子組
    成是由先天決定或是由後天發育所影響。
    對於了解齒間乳突上皮細胞是否特別具有幹細胞的分子表現,我們從健康人類身上取下牙齦組織將其分成兩組(兩相鄰有接觸牙之齒間乳突、邊緣牙齦),分別針對keratin15、keratin 19、Sox-2、Oct-4、β-catenin、integrinα6、 integrinβ1、 p63 和melanoma chondroitin sulfate proteoglycan。每ㄧ組以免疫組織化學染色來檢測其分子特徵表現。而在染色結果中發現,在兩相鄰有接觸牙之齒間乳突會有某些特殊的分子表現(如:K19、 Sox-2、 β-catenin),然而Sox-2、 β-catenin的表現在樣本群中並不一致,也因此後續部份主要針對K19來做分析。此外,為了了解主要是由先天基因或是後天環境所調控這種表現,我們更進一步分析兩相鄰無接觸牙之齒間乳突,無齒牙齦以及增生牙齦以釐清之間的關係。從免疫組織化學染色分析中可以發現,K19在兩相鄰無接觸牙之齒間乳突及無齒牙齦的基底細胞層顯得較淡甚至是沒有表現,因此我們推測齒間乳突這種特殊的表現似乎是受牙齒周圍的環境所影響,並且當牙齦增生或是局部發炎時,K19的表現亦會增加。
    另外,對於齒間乳突是否含有較多的幹細胞組成,我們分別從邊緣牙齦及齒間乳突取下組織培養在含有bromodeoxyuridine(BrdU)的培養液中, 並追蹤一段時間來標記及比較幹細胞的存在與數量;同樣的,我們也利用母鼠在懷孕中期注射BrdU,並且在幼鼠產下四週後再分析幼鼠齒間乳突及邊緣牙齦的幹細胞含量。從最終的結果中都可以發現,齒間乳突確實含有較多的標記滯留細胞,因此我們可以推測相較於邊緣牙齦,齒間乳突的確是有較多的幹細胞表現。

    Loss of the interdental papilla, especially the anterior area, is a significant challenge to the dental team. It can cause esthetic concerns, phonetic difficulties, and food impaction leading to periodontal problems. The reason for tissue loss in the interproximal regions can occur in a variety conditions, including, but not limited to, periodontal diseases, treatment of periodontal diseases, trauma, and other iatrogenic causes. To resolve this problem, lots of papers have presented surgical techniques aimed at grafting hard and soft tissue, but due to limited blood supply and access plague these approaches, significantly increasing the risk for failure. However we can discover drug-induced or hereditary gingival overgrowth, usually starts at the interdental papilla, suggesting that the interdental papilla is predisposed to gingival overgrowth. It is possible that the interdental papilla has unique functional characteristics that are due to distinct cellular or molecular properties, and the strong expression of certain molecules ( Ex: keratin 19 , the skin stem cell marker) at the interdental papilla is reported distinct from marginal gingiva. Therefore we want to know if the interdental papilla contains more stem cells, which make the interdental papilla tend to overgrowth, and this distinct cellular and molecular properties are determined by the congenital or acquired development.
    For testing if the interdental papilla expresses the specific markers of stem cells, biopsies of gingival tissue were obtained from healthy human and divided into 2 groups (papilla between two contact teeth、marginal gingival ), then using the immunohistochemistry to check the expressions of keratin15, keratin 19, Sox-2, Oct-4, β-catenin, integrin α6, integrinβ1, p63 and melanoma chondroitin sulfate proteoglycan. In the results of IHC staining, we find the contact interdental papilla expresses some specific molecules ( K19, Sox-2, β-catenin). However, the expressions of Sox-2 and β-catenin are not consistent in the group of interdental papilla. Therefore, in the next part, we focus on analyzing the expressions of K19. To understand the regulation of these genes, we further examined the mucosae from papilla between two open contact teeth, edentulous area and overgrowth gingiva. In the result of IHC analysis, we can find there are no or slight K19 expressions in the group of the papilla between two open contact teeth and edentulous area . Therefore, we suspect anatomical factors play an important role to the expression of K19 at interdental papilla, and the expression of K19 was enhanced when gingiva overgrowth or inflammation.
    Besides, for testing if the interdental papilla has more stem cells than marginal gingiva, we cultured the tissues from interdental papilla between two contact teeth and marginal gingiva in the medium contains bromodeoxyuridine (BrdU) then chasing for several weeks to label and compare the stem cells. Similarly, we injected BrdU solution into the pregnant mouse, and after the baby mouse was four weeks old, we analyzed the stem cells between the interdental papilla between two contact teeth and marginal gingiva. In the results of the in vitro and in vivo test, we found there were more BrdU retained cells in the interdental papilla, therefore interdental papilla indeed has more stem cells expressions than marginal gingiva.

    中文摘要............................................... II 英文摘要............................................... IV 誌謝....................................................VI 目錄..................................................VIII 圖目錄.................................................XII 英文縮寫檢索表........................................XIII 第一章 緒論.............................................1 一﹑牙齦組織與構造概論...................................1 二﹑牙齦的變化概論.......................................2 1.牙齦的萎縮..........................................2 2.牙齦的增生..........................................3 三﹑上皮細胞概論.......................................4 1.上皮幹細胞..........................................5 2.上皮幹細胞的鑑定....................................6 2.1 鑑定上皮幹細胞的方法: In vivo.....................6 2.2 鑑定上皮幹細胞的方法: In vitro....................7 2.3 鑑定上皮幹細胞的方法: 上皮幹細胞之細胞標誌(cell marker) ............7 2.3.1 Keratin 15 ; Keratin 19.......................7 2.3.2 β1-integrin ; α6-integrin...................8 2.3.3 p63...........................................9 2.3.4 melanoma-associated chondroitin sulfate (MCSP).9 2.3.5 Sox-2 ; Oct-4.................................10 2.3.6 β-catenin....................................10 四﹑研究動機 ........................................10 第二章 實驗材料與方法....................................12 一﹑免疫組織化學染色 ( Immunohistochemistry, IHC) .....12 A. 一般抗體染法..........................................14 B. BrdU染法..............................................16 二﹑BrdU長期標定法 ( BrdU long-term label retention ) .17 A.活體外實驗 ( in vitro ) : Organotypic cell culture.....17 B.活體內實驗 (in vivo) ..................................18 三﹑牙齦上皮組織觀察...................................19 四﹑儀器設備及耗材.....................................22 第三章 實驗結果.........................................25 一﹑邊緣牙齦及兩相鄰有接觸牙之齒間乳突的組織特徵......25 二﹑比較不同的上皮幹細胞標誌在邊緣牙齦及兩相鄰有接觸牙 之齒間乳突的表現情形................................25 1.Keratin 15 的表現.................................26 2.Keratin 19 的表現.................................26 3.Sox-2的表現.......................................27 4.Oct-4的表現.......................................27 5.β-catenin的表現..................................27 6.Integrin α6的表現................................28 7.Integrin β1的表現................................28 8.p63的表現.........................................29 9.Melanoma chondroitin sulfate proteoglycan (MCSP) 的表現............................................29 二﹑齒間乳突的組織構造...................................30 三﹑比較keratin 19在不同牙齦上皮的表現情形...............30 四﹑比較keratin 19在不同區域牙齦的表現情形...............31 五﹑比較BrdU標記殘存細胞在邊緣牙齦及兩相鄰有接觸牙之齒 間乳突的差異.........................................32 1.比較在組織培養下BrdU標誌殘存細胞的表現..............32 2.比較在活體內BrdU標誌殘存細胞的表現 .................32 第四章 實驗討論..........................................34 第五章 結論..............................................40 參考文獻...................................................41 附圖.....................................................46

    Ainamo J, Loe H.. Anatomical characteristics of gingiva. A clinical and microscopic study of the free and attached gingival, J Periodontol. 1966 37:5–13.

    Ainamo, J., Talari, A. (1976). The increase with age of the width of attached gingiva. Journal of Periodontal Research.1976; 11:182–188.

    Berkovitz BKB, Holland GR, Moxham BJ. Oral Anatomy, Histology and Embryology. New York: Mosby International Limited; 2002:1-7.

    Bickenbach JR: Identification and behavior of label-retaining cells in oral mucosa and skin. J Dent Res. 1981 Aug;60:1611-20.

    Bickenbach,J.R. and Chism,E. Selection and extended growth of murine epidermal stem cells in culture. Exp. Cell Res.1998; 244:184–195.

    Bickenbach,J.R., McCutecheon,J. and Mackenzie,I.C. Rate of loss of tritiated thymidine label in basal cells in mouse epithelial tissues. Cell Tissue Kinet.1986; 19, 325–333.

    Bolzani G, Della Coletta R, Martelli Junior H, Martelli Junior H, Graner E. Cyclosporin A inhibits production and activity of matrix metalloproteinases by gingival fibroblasts. J Periodontal Res 2000;35:51-58.

    Bosch FX, Ouhayoun JP, Bader BL. Extensive changes in cytokeratin expression patterns in pathology affected human gingiva. Virc Arch (B) 1989;58:59-77.

    Bowers GM.. A study of the width of the attached gingiva. J Periodontol.1963 ;34:201-209.

    Carranza FA, Bernard GW(2003) Carranza's Clinical Periodontology, ed 9, WB Saunders Philadelphia. (pp 36–57).
    Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell. 1990; Jun 29;61(7):1329-37

    Cho HS, Jang HS, Kim DK, et al. The effects of interproximal distance between roots on the existence of interdental papillae according to the distance from the contact point to the alveolar crest. J Periodontol. 2006;77:1651-1657.

    Duncan MR, Berman B. Stimulation of collagen and glycosaminoglycan production in cultured human adult dermal fibroblasts by recombinant human interleukin-6. J Invest Dermatol 1991;97:686-689.

    Fries KM, Felch M, Phipps R. Interleukin-6 is an autocrine growth factor for murine lung fibroblast subsets. Am J Respir Cell Mol Biol 1994;11:552-560.

    Garant PR. (2003). Oral Cells and Tissues. 1st ed. Quintescence. ISBN 0867154292. Chicago

    Hassell TM. Evidence for production of an inactive collagenase by fibroblasts from phenytoin-enlarged humangingiva. J Oral Pathol 1982;11:310-317.

    Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. and Birchmeier, W. (2001). beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533-545.

    Hormia M, Sahlberg C, Thesleff I, Airenne T. The epithelium–tooth interface–a basal lamina rich in laminin-5 and lacking other known laminin isoforms. J Dent Res 1998;77:1479–1485.

    Hormia M, Owaribe K, Virtanen I. The dento-epithelial junction: cell adhesion by type I hemidesmosomes in the absence of a true basal lamina. J Periodontol 2001;72:788–797.

    Jensen UB, Lowell S, Watt FM: The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: A new view based on whole-mount labelling and lineage analysis. Development 1999;126:2409–2418,

    Johnson RB, Zebrowski EJ, Dai X. Synergistic enhancement of collagenous protein synthesis by human gingival fibroblasts exposed to nifedipine and interleukin-1-beta in vitro. J Oral Pathol Med 2000;29:8-12.

    Jones PH, Harper S, Watt FM: Stem cell patterning and fate in human epidermis. Cell 80:83–93, 1995

    Jones PH, Watt FM: Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73:713–724, 1993

    Kan JY, Rungcharassaeng K, Lozada J. Immediate placement and provisionalization of maxillary anterior single implants: 1-year prospective study. Int J Oral Maxillofac Implants. 2003;18:31-39.

    Kataoka M, Shimizu Y, Kunikiyo K, et al. Cyclosporin A decreases the degradation of type I collagen in rat gingival overgrowth. J Cell Physiol 2000;182:351-358.

    Lewis IK, Hanlon JT, Schmader KE, et al. Use of medications with potential oral adverse drug interactions in community-dwelling elderly. Spec Care Dentist 1993;13: 171-176.

    Lyle, S, Christofidou-Solomidou, M. Liu, Y, Elder, D, Albelda, S., Cotsarelis, G. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J Cell Science.1998; 111: 3179-3188

    Morris RJ, Potten CS. Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen. J Invest Dermatol. 1999; Apr;112(4):470-5.

    Michel M, Török N, Godbout MJ, Lussier M, Gaudreau P, Royal A, Germain L. Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage. J Cell Sci. 1996; May;109 ( Pt 5):1017-28.

    Mackenzie IC, Rittman G, Gao Z, Leigh I, Lane EB. Patterns of cytokeratin expression in human gingival epithelia. J Periodontal Res. 1991; Nov;26(6):468-78.

    Olsson M, Lindhe , et al. characteristics in individuals with varying form of the upper central incisors. J Clin Periodontol. 1991;18:78-82.

    Ouhayoun JP, Goffaux JC, Sawaf MH, Shabana AH, Collin C, Forest N. Changes in cytokeratin expression in gingiva during inflammation. J Periodontal Res1990; 25: 283~292.

    Oksonen J, Sorokin LM, Virtanen Hormia M. The junctional epithelium around murine teeth differs from gingival epithelium in its basement membrane composition. J Dent Res 2001;80:2093–2097.

    Rees TD, Levine RA. Systemic drugs as a risk factor for periodontal disease initiation and progression. Compend Contin Educ Dent 1995;16:20-42.

    Su Q, Fu Y, Liu YF, Zhang W, Liu J, Wang CM. Laminin induces the expression of cytokeratin 19 in hepatocellular carcinoma cells growing in culture. World J Gastroenterol. 2003 May;9(5):921-9.

    Schro¨eder HE. The periodontium. In: Oksche A, Vollrath L, eds. Handbook of Microscopic Anatomy. Berlin: Springer-Verlag, 1986:171–232.

    Sawada T, Inoue S. Mineralization of basement membrane mediates dentogingival adhesion in mammalian and non-mammalian vertebrates. Calcif Tissue Int 2003;73:186–195.

    Schroeder, H.E. & Listgarten, M.A. (1997). The gingival tissues: the architecture of periodontal protection. Periodontology 2000 13, 91–120.

    Shimono M, Ishikawa T, Enokiya Y, et al. Biological characteristics of the junctional epithelium. J Electron Microsc (Tokyo) 2003;52:627-639.

    Shimono M, Ishikawa T, Enokiya Y, et al. Biological characteristics of the junctional epithelium. J Electron Microsc (Tokyo) 2003;52:627-639.

    Tarnow DP, Magner AW, Fletcher P. The effect of the distance from the contact point to the crest of bone on the presence or absence of the interproximal dental papilla. J Periodontol. 1992;63: 995-996.

    Tarnow D, Elian N, Fletcher P, et al. Vertical distance from the crest of bone to the height of the interproximal papilla between adjacent implants. J Periodontol 2003;74:1785-1788

    Tarnow D, Elian N, Fletcher P, et al. Vertical distance from the crest of bone to the height of the interproximal papilla between adjacent implants. J Periodontol 2003;74:1785-1788

    Ten Cate AR. (1998). Oral histology, development, structure and function, 5th ed, Mosby. ISBN 032304557X. St. Louis.

    Van der Velden U (1984). Effect of age on the periodontium, J Clin Periodontol 11:281–294.

    Voigt JP, Goran ML, Fleisher RM. (1978)The width of lingual mandibular attached gingiva. J Periodontol; 49:77-80.

    Williamson MS, Miller EK, Plemons J, Rees T, Iacopino AM. Cyclosporine A upregulates interleukin-6 gene expression in human gingiva: Possible mechanism for gingival overgrowth. J Periodontol 1994;65:895- 903.

    下載圖示 校內:2014-08-23公開
    校外:2014-08-23公開
    QR CODE