| 研究生: |
周廷彰 Chou, Ting-Chang |
|---|---|
| 論文名稱: |
表面波譜法應用於土石壩體動態參數特性之研究 The Study of Dynamic Properties of Earth Dam Using SASW Method |
| 指導教授: |
倪勝火
Ni, Sheng-huoo |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 161 |
| 中文關鍵詞: | 現地試驗 、表面波譜法 、土石壩 、雷利波 |
| 外文關鍵詞: | earth dam, Rayleigh wave, SASW method, in-situ test |
| 相關次數: | 點閱:161 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
土石壩體材料之動態特性為評估壩體於地震反應時,安全性分析所需之重要參數。由於試驗室所取得的土樣其應力狀態和現地情形已不相同,且試體代表性不足,因此進行現地試驗有其必要性。現地試驗常使用之鑽孔震測法量
測時需事先鑽孔且需變換接收器位置,除試驗過程耗時費用高外,鑽孔對壩體安全影響之風險亦難以評估。表面波譜法(Spectral Analysis of Surface Wave method,簡稱SASW) 為近年來新發展之現地震測方法,為使用脈衝震源產生雷利波,利用頻散曲線求取土層剪力波速剖面。利用SASW進行試驗僅需將受波器安置於土層表面無需鑽孔,震波對於土層產生之應變範圍屬微小應變 (γ<0.001%),為一種非破壞性檢測方法,可以快速、經濟的求取土層動態參數。
於現地試驗時使用不同震源及受波器間距,比較各試驗參數之影響,同時佈設多個受波器量測以取得現地完整頻散曲線。分析時利用改良式平均演算法求得平均頻散曲線,並以改良Satoh近似反算法求得土層試算參數進行正向模式反算分析,為評估SASW應用於土石壩體動態參數特性之適用性,本文針對曾文水庫及阿公店水庫之土石壩體進行SASW之試驗研究,並和其他震測法試驗結果進行分析比對。最後依據研究結果提出結論與建議。
研究結果顯示,表面波譜法推估之土層剪力波速剖面與壩體土層分佈圖趨勢相當吻合,可有效判讀土層材料分佈剖面,與下孔式探測法之平均差異值約6.2%。顯示利用表面波譜法可於不破壞土石壩體結構條件下,求得壩體材料剪力波速及剪力模數等動態參數,為一經濟快速有效的壩體材料動態參數檢測評估法。
It is required to determine the dynamic properties of the subject material in the evaluation of earth dam’s response during earthquakes. There are laboratory methods and in-situ seismic methods to measure the dynamic stiffness of earth dam materials. The laboratory test methods usually suffer from the effects of factors such as sample disturbance, alteration of state of stress and non-representative samples. Therefore, it is preferable to measure the properties using in-situ seismic methods. In-situ seismic methods such as cross-hole and down-hole tests have been proven to be the reliable. Unfortunately, the need of boreholes makes these methods too expensive or time consuming. They are extremely difficult to use when site conditions is difficult to install the boreholes.
The spectral analysis of surface wave method (SASW) is an in-situ seismic method which is recently developed. This method uses a transient impact to generate Rayleigh wave on the ground surface, and measures the ground surface response to determine the shear wave velocity profiles of soil deposits. This study includes field measurement of dispersion curves to evaluate shear wave velocity profiles of soil. Different impact sources were used to generate broad frequencies domain, and multi-receivers were used to determine the complete dispersion curve in this study. By applying a forward model for the inversion process, the profile parameters obtained using the modified Satoh’s method was compared with those of using down-hole test method.
The dissertation presents the results on the study of in-situ investigation of Tseng-Wen and A-Gung-Dian earth dam using SASW method. The results show that the deviation is within 6.2% between SASW method and the down-hole test data. It is show that SASW method can evaluate the dynamic properties of earth dam quickly and cost effectively.
Bolt, B.A., Earthquakes, W.H. Freeman Company, New York, p. 29 (1978).
Chen, L., Zhu, J., Yan, X., and Song, C., “On Arrangement of Source and Receivers in SASW Testing,” Soil Dynamics and Earthquake Engineering, Vol. 24, pp. 389-396 (2004).
Das, B.M., Principles of Soil Dynamics, PWS-KENT Publishing Company, Boston, pp. 69-86, 125-163 (1992).
Dunkin, J.W., “Computation of Modal Solutions in Layered Elastic Media at High Frequencies,” Bulletin of the Seismological Society of America, Vol. 55, No. 2, pp. 335-358 (1965).
Dziewonski, A.M., S. Bloch., and M. Landisman., “A Technique for the Analysis of Transient Seismic Signals,” Bulletin of the Seismological Society of America, Vol. 59, No. 1, pp. 427-444 (1969).
Gucunski, N., and Woods, R.D., “Inversion of Rayleigh Wave Dispersion Curve for SASW Test,” Soil Dynamics and Earthquake Engineering, Vol. 1, pp. 127-138 (1991).
Gucunski, N., and Woods, R.D., “Numerical Simulation of the SASW Test,” Soil Dynamics and Earthquake Engineering, Vol. 11, No. 4, pp. 213-227 (1992).
Haskell, N. A., “The Distribution of Surface Waves on Multilayered Media,” Bulletin of the Seismological Society of America, Vol. 43, pp. 17-34 (1953).
Heisey, J. S., Stokoe, II, K.H., Hudson, W. R., and Meyer, A. H., “Determination of In Situ Shear Wave Velocities from Spectral Analysis of Surface Waves,” Research Report No. 256-2, Center for Transportation Research, The Univ. of Texas at Austin, (1982).
Heukelom, W., and Foster, C.R., “Dynamic Testing of Pavements,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 86, SM1, Part1, pp. 1-28 (1960).
Joh, S.H., “Advances in Interpretation and Analysis Techniques for Spectral-Analysis-of-Surface-Waves Measurement,” Ph. D. Dissertation, The Univ. of Texas at Austin, pp. 5-107 (1996).
Jones, R., “In-Situ Measure of the Dynamic Properties of Soil by Vibration Methods,” Geotechnique, London, Vol. 8, pp. 1-21 (1958).
Kausel, E., and Roësset, J.M., “Stiffness Matrices for Layered Soils,” Bulletin of the Seismological Society of America, Vol. 71, No. 6, pp. 1743-1761 (1981).
Kausel, E., and Peek, R., “Dynamic Loads in the Interior of a Layered Stratum: an Explicit Solution,” Bulletin of the Seismological Society of America, Vol. 72, pp. 1459-1508 (1982).
Kramer, R.W., Macdonald, R.B., Tiedemann, D.A., and Viksne, A., Dynamic Analytic of Tsengwen Dam, United States Department of the Interior Bureau of Reclamation, pp. Ⅲ(1)-Ⅲ(19) (1975).
Lin, C. P., Chang, C. C., and Chang, T. S., “The Use of MASW Method in the Assessment of Soil Liquefaction Potential,” Soil Dynamics and Earthquake Engineering, Vol. 24, pp. 689-698 (2004).
Nazarian, S., and Stokoe, II, K.H., “In Situ Determination of Elastic Moduli of Pavement Systems by Spectral-Analysis-of-Surface-Wave Method (Practical Aspects),” Research Report 368-1F, Center for Transportation Research, The Univ. of Texas at Austin, pp. 27-99 (1985).
Nazarian, S., and Stokoe, II, K.H., “In Situ Determination of Elastic Moduli of Pavement Systems by Spectral-Analysis-of-Surface-Waves Method (Theoretical Aspects),” Research Report 437-2, Center for Transportation Research, The Univ. of Texas at Austin, pp. 9-28, 77-103 (1986).
Nazarian, S., and Desai, M.R., “Automated Surface wave Method:Field Testing,” Journal of Geotechnical Engineering, Vol. 119, No. 7, pp. 1094-1126 (1993).
Nippon Koei Co., Ltd., and Sinotech Engineering Consultants, Inc., Final Report on Safety Assessment of The Tsengwen Dam and Appurtenant Structures, Appendix, pp. C1-C38 (1987).
Richart, F.E., Jr., J.R., and Woods, R.D., Vibrations of Soils and Foundations, Prentice Hall, Inc., Englewood Cliffs, New Jersey (1970).
Rix, G.J., “Experimental Study of Factors Affecting the Spectral-Analysis-of-Surface-Waves Method,” Ph. D. Dissertation, The Univ. of Texas at Austin, p. 43, pp. 185-186, 227-228 (1988).
Rix, G.J., “Simultaneous Measurement of Surface Wave Dispersion and Attenuation Curve,” Geotechnical Testing Journal, Vol. 24, No. 4, pp. 350-358 (2001).
Rosenblad, B.L., Rathje, E.M., and Stokoe, II, K.H., “Shear Wave Velocity Profiling by SASW Method at Selected Strong-Motion Stations from the 1999 Turkey Earthquake,” Final Report to Pacific Earthquake Engineering Research Center (2001).
Satoh, T., Poran, C.J., Yamagata, K., and Rodriquez, J.A., “Soil Profiling by Spectral Analysis of Surface Waves,” Proceedings of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, pp. 1429-1434 (1991).
Thomson, W.T., “Transmission of Elastic Waves through a Stratified Solid Medium,” Journal of Applied Physics, Vol. 21, pp. 89-93 (1950).
Tokimatsu, K., “Effect of Multiple Modes on Rayleigh Wave Dispersion Characteristics,” Journal of Geotechnical Engineering, Vol. 118, No. 10, pp. 1529-1543 (1992).
倪勝火,常正之,「土層中雷利波散射曲線之數值計算模式分析」,中國土木水利工程學刊,第四卷,第一期,第49-57頁 (1992)。
常正之,「應用雷利波散射曲線反算土層動態參數之研究」,博士論文,國立成功大學土木工程研究所 (1993)。
張德文,「表面波譜法檢測層狀地工系統之理論研究」,第六屆路面工程學術研討會,第381-402頁 (1992)。
古旭程,「表面波譜法應用於土層動態特性評估之研究」,碩士論文,國立成功大學土木工程研究所 (1993)。
林盈政,「表面波譜法應用於偵測地下管線技術之初步研究」,碩士論文,國立成功大學土木工程研究所 (1996)。
張榮峰,「表面波譜法應用於偵測地下管線之參數研究」,碩士論文,國立成功大學土木工程研究所 (1997)。
許子建,「有限差分法於雷利波波傳反算之應用」,碩士論文,國立台灣大學土木工程研究所 (1999)。
黃紹揚,「頻散曲線之有限差分法反算土層剪力波速」,碩士論文,國立台灣大學土木工程研究所 (2000)。
王宗文,「以連續表面波法(CSW)反算土層動態參數之研究」,碩士論文,國立台灣大學土木工程研究所 (1999)。
鄭福和,「波傳矩陣之最佳化基因演算法於頻散曲線反算土層剪力波速之研究」,碩士論文,國立台灣大學土木工程研究所 (2000)。
倪勝火,「表面波譜法之分析原理與應用」,地工技術,第86期,第5-18頁 (2001)。
張正宙,「多頻道表面波震測之研究及其在大地工程之應用」,碩士論文,國立交通大學土木工程研究所 (2002)。
潘建志,「表面波譜法反算土層剪力波速之探討」,碩士論文,國立成功大學土木工程研究所 (2002)。
黃俊豪,「應用表面波譜法調查土層剪力波速之研究」,碩士論文,國立成功大學土木工程研究所 (2003)。
倪勝火,黃俊豪,周廷彰,「應用表面波譜法評估現地土層剪力波速之研究」,第二十七屆中華民國力學年會既全國力學會議論文集(2003)。
江福壽,「頻散曲線評估土層剪力波速剖面之初步研究」,碩士論文,國立成功大學土木工程研究所 (2004)。
何達夫,「利用表面波譜法量測阿公店水庫壩體動態性質之初步探討」,碩士論文,國立成功大學土木工程研究所 (2005)。