| 研究生: |
吳昭漢 Wu, Chao-han |
|---|---|
| 論文名稱: |
射頻磁控濺鍍Cu6Sn5電極之充放電特性研究 The Charge-Discharge Characteristics of Cu6Sn5 Electrode Prepared by RF-Sputtering |
| 指導教授: |
呂傳盛
Lui, Truan-sheng 陳立輝 Chen, Li-hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 循環性 、電極 |
| 外文關鍵詞: | capacity |
| 相關次數: | 點閱:90 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
與現行所廣泛使用的商用碳材相比,Sn作為鋰離子二次電池負極材料具有高電容量的優點,但Sn經數次充放電循環會因體積變化過劇,造成極片表面產生網狀裂纹,導致循環性迅速劣化,因此必須在Sn中添加其他元素以抑制體積變化,如:Ni、Sb與Cu,其中Cu與其他兩者相比具有價格低廉、取得容易與Sn-Cu IMC電容量較高等優點,使Sn-Cu合金成為現今最具潛力的負極材料。
本實驗採用射頻磁控濺鍍方式製備Cu6Sn5負極極片,並討論膜厚與熱處理對試片之充放電特性之影響。
本實驗中比較不同膜厚負極材料之充放電特性,發現當膜厚由500nm增加至1500nm時,可嵌裡的體積增加使電容量提高,同時材料之相對結晶度上升,電阻率下降,利於鋰離子與電子遷移,使嵌鋰反應改變,進而提升循環性與庫倫效率。
本實驗中亦比較負極材料熱處理前後之充放電特性,發現材料經熱處理後,雖使相對結晶度上升,電阻率下降,但熱處理亦導致鍍層產生裂縫,進行充放電時裂縫除了使鈍化膜面積增加,亦對鋰離子與電子之遷移造成阻礙,改變嵌鋰反應,導致循環性下降。
Sn has been considered to replace graphite anode material for lithium-ion rechargeable batteries because of its high capacity. During charge-discharge cycling, network cracks on the surface of Sn anode was induced by repeated volume variation. The defect on Sn anode resulted in cyclability fading. Doping another element, ex: Ni, Sb and Cu, in Sn can suppress this condition effectively. Cu is more desirable than others because not only it has lower cost but also Sn-Cu IMC possesses higher discharge capacity.
In this study, RF-sputtering was adopted to prepare Cu6Sn5 anode. The effect on the charge-discharge characteristics resulted from change of coating thickness and annealing was discussed.
Crystallinity, capacity and resistivity of anode would change when coating thickness increased from 500nm to 1500nm. The reaction of Li besetting and the ratio of volume change were also influenced. Higher cyclability and coulomb efficiency could be explained by those reasons.
Except for the effect of coating thickness, the improvement of crystallinity, decreasing of resistivity and cracks of anode existed after annealing. Cracks not only increased the area of passive film but also blocked the migration of Li and electrons. Cyclability fading might be related to the cracks induced by annealing.
1. G. Pistoria, “Lithium Batteries: New Materials, Developments and Perspectives”, Elsevier, Chap.1, (1994), pp. 3-10.
2. W. Pu, X. He, J. Ren, C. Wan, C. Jiang , “Electrodeposition of Sn–Cu Alloy Anodes for Lithium Batteries”, Electrochimica Acta , 50, (2005), pp. 4140–4145.
3. B. Scrosati, “Lithium Rocking Chair Batteries: An Old Concept?”, J. Electrochem. Soc., 139, (1992), pp. 2776-2780.
4. S. Megahed, B. Scrosati, “Lithium-ion Rechargeable Batteries”, J. Power Sources, 51, (1994), pp. 79-104.
5. M. Winter, J. O. Besenhard, M. E. Spahr, P. Novák, “Insertion Electrode Materials for Rechargeable Lithium Batteries”, Adv. Mater., 10, (1998), pp. 725-763.
6. 尹立輝, 高俊奎, 邱瑞珍, 『鋰離子蓄電池鍍錫陽極材料的研究』, 電源技術, 29, 2005年, 716-718頁。
7. W. Mario, J. O. Besenhard, W. Martin, “Tin and Tin-based Intermetallics as New Anode Materials for Lithium-ion Cells”, J. Power Sources, 94, (2001), pp. 189-193.
8. W. Martin, J. O. Besenhard, “Electrochemical Lithiation of Tin and Tin-based Intermetallics and Composites”, Electrochim Acta, 45, (1999), pp. 31-50.
9. Y.Y. Xia, Tetsuo Sakai, Takuya Fujieda, Masashi Wada, HiroshiYoshinaga, “Flake Cu-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries”, J. Electrochem. Soc., 148, (2001), pp. A471-A479.
10. T. Noriyuki, O. Ryuji, F. Masahisa, F. Shin, K. Maruo, Y. Ikuo,
“Study on the Anode Behavior of Sn and Sn–Cu Alloy Thin-film Electrodes”, J. Power Sources, 107, (2002), pp. 48-55.
11. L. Wang, S. Kitamura, T. Sonoda, K. Obata, S. Tanase, T. Sakai,
“Electroplated Sn-Zn Alloy Electrode for Li Secondary Batteries”, J. Electrochem. Soc., 150, (2002), A1346.
12. K.D. Kepler, J.T. Vaughey, M.M. Thackeray, “Copper–tin Anodes for Rechargeable Lithium Batteries: An Example of the Matrix Effect in An Intermetallic System”, J. Power Sources, 81–82, (1999), pp.383.
13. J. Wolfenstine, S. Campos, D. Foster, J. Read, W.K. Behl,
“Nano-scale Cu6Sn5 Anodes”, J. Power Sources, 109, (2002), pp. 230.
14. 舒杰, 程新群, 史鵬飛, 馬少斌, 『鋰離子蓄電池用Cu-Sn合金負極的製備極改性』, 電源技術, 29, 2005年, 217-226頁。
15. 關俊美, 楊勇, 『非碳類新型鋰離子蓄電池負極材料研究進展』, 28, 2004年, 435-439頁。
16. 舒杰, 史鵬飛, 程新群, 『鋰離子蓄電池用二元錫基合金負極的研究進展』, 28, 2004年, 715-718頁。
17. Y.L. Kim, H.Y. Lee, S.W. Jang, “Nanostructured Ni3Sn2 Thin Film as Anodes for Thin Film Rechargeable Lithium Batteries”, J. Solid State Ionics, 160, (2003), pp. 235-240.
18. G.N. Ehrlich, C. Durand, X. Chen, “Metallic Negative Electrode Materials for Rechargeable Nanoqueous Batteries”, J. Electrochem. Soc., 147(3), (2000), pp. 886-891.
19. H.Y. Lee, S.W. Jang, S.M. Lee, “Lithium Storage Properties of Nanocrystalline Ni3Sn4 Alloys Prepared by Mechanical Alloying”, J. Power Sources, 112, (2002), pp. 8-12.
20. H. Li, L. Shi, W. Lu, “Studies on Capacity Loss and Aapacity Fading of Nanosized SnSb Alloy anode for Li-ion Batteries”, J. Electrochem. Soc., 148(8), (2001), pp. A915-A922.
21. J. Yang, Y. Takeda, N. Imanishi, “Intermetallic SnSbx Compounds for Lithium Insertion Hosts”, J. Solid State Ionics, 133, (2000), pp. 189-194.
22. J.O. Besenhard, M. Wachtler, M. Winter, “Kinetics of Li Insertion into Polycrystalline and Nanocrystalline “SnSb” Alloys Investigated by Transient and Steady State Techniques”, J. Power Sources, 81-82, (1999), pp. 268-272.
23. D.G. Kim, H. Kim, H.J. Sohn, “Nanosized Sn-Cu-B Alloy Anode Prepared by Chemical Reduction for Secondary Lithium Batteries”, J. Power Sources, 104, (2002), pp. 221-225.
24. J.W. Park, S. Rajendran, H.S. Kwon, “Effects of Substrate Morphology and Ageing on Cycle Performance of a Sn-anode Fabricated by Electroplating”, J. Power Sources, 159, (2006), pp. 1409-1415.
25. N. Tamura, R. Ohshita, M. Fujimoto, S. Fujitani, M. Kamino, I. Yonezu, “Study on the Anode Behavior of Sn and Sn–Cu Alloy Thin-film Electrodes”, J. Power Sources, 107, (2002), pp. 48-55.
26. M.M. Thackeray, J.T. Vaughey, C.S. Johnson, A.J. Kropf, R. Benedek, L.M.L. Fransson, K. Edstrom, “Structural Considerations of Intermetallic Electrodesfor Lithium Batteries”, J. Power Sources, 107, (2002), pp. 48-55.
27. 陳威佑, 『偏壓磁控共濺鍍銅錫薄膜負極材料電化學特性之研究』, 逢甲大學材料科學與工程學研究所碩士論文, 民國95年5月, 80-81頁。
28. E. E. Yair, “A New Perspective on the Formation and Structure of the Solid Electrolyte Interface at the Graphite Anode of Li-Ion Cells”, Electrochem. Solid State Letters, 2, (1999), pp. 212-214.
29. G. Ghosh, M. Asta, “Phase stability, Phase Transformations, and Elastic Propertiesof Cu6Sn5: Ab Initio Calculations and Experimental Results” J. Mater. Res., 20, (2005), pp. 3102-3117.
30. D.L. Smith: Thin Film Deposition: Principles and Practices, McGraw-Hill, (1995), pp. 575-577.
31. S.J. Lee, H.Y. Lee, S.H. Jeonga, H.K. Baika, S.M. Lee, “Performance of Tin-Containing Thin-Film Anodes for Rechargeable Thin-Film Batteries”, J. Power Sources, 111, (2002), pp. 345–349.
32. F.M. Smits, “Measurement of Sheet Resistivities with the Four-Point Probe”, Bell System Tech. J., (1958), pp.711-712
33. M.M. Thackeray, J.T. Vaughey, C.S. Johnson, A.J. Kropf, R. Benedek, L.M.L. Fransson, K. Edstrom, “Structural Considerations of Intermetallic Electrodes for Lithium Batteries”, J. Power Sources, 113, (2003), pp. 124-130
34. S. Sharma, L. Fransson, E. Sjostedt, L. Nordstrom, B, Johansson, K, Edstrom, “A Theoretical and Experimental Study of the Lithiation of η’-Cu6Sn5 in a Lithium-Ion Battery”, J. Electrochem. Soc., 150, (2003), pp. 330-334
35. 林克芝, 王曉琳, 徐艷輝, 『鋰離子電池錫基負極材料的改性研究進展』, 29, 2005年, 62-658頁。