| 研究生: |
陳柏仲 Chen, Po-Chung |
|---|---|
| 論文名稱: |
扭力轉換器扁平化設計的數值模擬分析 Numerical Simulation of Torque Converter Squashing Design |
| 指導教授: |
陳世雄
Chen, Shih-Hsiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 計算流體力學 、性能 、轉速比 、扁平化設計 、扭力轉換器 |
| 外文關鍵詞: | Squashing Design, CFD, Performance, Torque Converter, Speed Ratio |
| 相關次數: | 點閱:91 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
扭力轉換器的扁平化設計以減少體積及重量但同時又保有高效率是車輛工業的努力方向,本研究參考Jandasek (1961)所做的外型及操作條件為基礎,計算其流場、性能並與其實驗結果做比對,並以此基礎再將扭力轉換器在各層葉片入出口角不變的情況下將扭力轉換器沿著軸向做雙邊與單邊20%的扁平化,探討流場與性能上的差異,了解扁平化設計的優缺點及物理特性,進而作為未來設計扭力轉換器的參考依據。本研究利用CFD方法模擬扭力轉換器三維流場進行數值模擬研究,數值方法採用有限體積法求解三維Reynolds-Averaged Navier-Stokes方程式,配合k-ε紊流模型與非結構性網格,計算不同轉速比下的扭力比、效率與流場特性。首先在原外形的模擬結果符合文獻實驗數據,驗證了模擬的準確性。扁平化的分析結果顯示,扭力轉換器的元件在沿軸向扁平化後將使該元件葉片壓力面與吸力面間的壓差增加而提升扭力,而單邊扁平在扭力比與效率的提升上較雙邊扁平來得有優勢,能在不犧牲整體性能的前提下縮小體積。未來可藉由對流場的了解進而做葉片角度的變更,使扁平化設計的效率能夠提升。
Squashing design of torque converter is the striving way of vehicle industry to reduce the volume and weight and it can also maintain high efficiency. This research consults the profile and condition of Jandasek’s (1961) work, calculates the flow-field and performance and then compares the results with the experiment for verification. The torque converter is squashed by 20% bilaterally and unilaterally in axial direction under the same blade angle to investigate the difference of flow-field and performance. Thus, major advantages and physical characteristic of squashing design are obtained. The above study can be a refer-ence for future design. To understand the inner flow-field of three blade sets, this research simulates the 3-D flow-field and calculates the performance under different speed ratio by using CFD method, solving Reynolds-Averaged Navier-Stokes equation numerically with finite volume method and involving the k-ε turbulence model and unstructured grid. The simulation result of the original profile matches satisfyingly with the experiment. The analysis result of squashing design reveals that the pressure difference between pressure side and suction side gets higher after the squashing and then the torque of blade is in-creased. The unilateral squashing type is better than bilateral squashing type on increasing the torque ratio and efficiency. It can reduce the volume and will not sacrifice the perfor-mance. According to our realization about the flow-field inside the torque converter, the efficiency of squashing design will promote by changing the blade angle in the future.
[1] Schneider, H. and Spannhake, E. W., “Hydraulic Torque Converter,” US Patent No. 2306758, 1942.
[2] Schneider, R. C., “Hydraulic Torque Converter,” US Patent No. 3125857, 1964.
[3] Loffelholz, H., “Hydraulic Torque Converter,” US Patent No. 3503209, 1970.
[4] Arai, H. and Oonuma, K., “Torque Converter with Narrowed Flow Passages,” US Patent No. 4186557, 1980.
[5] Becraft, G. R., “Hydraulic Torque Converter,” US Patent No. 5152139, 1992.
[6] Jandasek, V. J., “Design of Single-Stage, Three-Element Torque Converter,” Design Practices: Passenger Car Automatic Transmissions, Third Edition, 1994.
[7] Numazawa, A., Ushijima, F., Fukumura, K. and Ishihara, T., “An Experimental Analysis of Fluid Flow in a Torque Converter,” SAE paper No. 830571, 1983.
[8] Schweitzer, J. and Gandham, J., “Computational Fluid Dynamics in Torque Converters: Validation and Application,” International Journal of Rotating Machinery, Vol. 9, pp. 411-418, 2003.
[9] Kano, S., Terasaka, Y. and Yano, K., “Prediction of Torque Converter Characteristics by Fluid Flow Simulation,” Komatsu Technical Report, Vol. 50, No. 154, 2004.
[10] Flack, R. and Brun, K., “Fundamental Analysis of the Secondary Flows and Jet-Wake in a Torque Converter Pump-Part 1: Model and Flow in a Rotating Passage,” Journal of Fluids Engineering, Vol. 127, pp. 66-74, Jan. 2005.
[11] Flack, R. and Brun, K., “Fundamental Analysis of the Secondary Flows and Jet-Wake in a Torque Converter Pump-Part 2: Flow in a Curved Stationary Passage and Combined Flows,” Journal of Fluids Engineering, Vol. 127, pp. 75-82, Jan. 2005.
[12] Goldstein, S., “On the Vortex Theory of Screw Propellers,” Proceedings of Royal Society, A123, NO. 792, pp. 440-465, Jan. 1929.
[13] Glauert, H., “The Element of Aerofoil and Airscrew Theory,” Cambridge University Press, 1947.
[14] Sullivan, J. P., “The Effect of Blade Sweep on Propeller Performance,” AIAA paper 77-176, June 1977.
[15] Wu, C. H., “A General Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial-, Radial-, and Mixed Flow Type,” NACATN2604, 1952.
[16] McFarland, E. R., “Solution of Plane Cascade Flow Using Improved Surface Singularity Methods,” Journal of Engineering for Power, Vol. 104, No. 3, pp. 668-674, 1982.
[17] Kobayakawa, M. and Onuma, H., “Propeller Aerodynamic Performance by Vortex-Lattice Method,” Journal of Aircraft, Vol. 22, No. 8, pp. 649-654, Aug. 1985.
[18] Hanson, D. B., “Compressible Helicoidal Surface Theory for Propeller Aerodynamics and Noise,” AIAA Journal, Vol. 21, No. 6, pp. 881-889, 1983.
[19] Chen, S. H. and Williams, M. H., “Panel Method for Counter-Rotating Propfans,” Journal of Propulsion and Power, Vol. 7, No. 4, July-Aug. 1991.
[20] Ni, R. H., “A Multiple Grid Scheme for Solving the Euler Equations,” AIAA Journal, Vol. 20, No. 11, Nov. 1982.
[21] Chima, R. V., “Inviscid and Viscous Flows in Cascades with an Explicit Multiple Grid Algorithms,” AIAA Journal, Vol. 23, pp. 1556-1563, 1985.
[22] Weber, K. F., Thoe, D. W. and Delaney, R. A., “Analysis of Three-Dimensional Turbomachinery Flow on C-Type Grids Using an Implicit Euler Solver,” ASME paper 89-GT-85, June 1989.
[23] Adamczyk, J. J., Celestina, M. L., Beach, T. A. and Barnett, M., “Simulation of Three-Dimensional Viscous Flow within a Multistage Turbine,” Journal of Turbomachinery, Vol. 112, No. 3, pp. 370-376, 1990.
[24] Abe, K. I., Kondoh, T., Fukumura, K. and Kojima, M., “Three-Dimensional Simulation of the Flow in a Torque Converter,” SAE paper No. 910800, 1991.
[25] Denton, J. D., “The Calculation of Three-Dimensional Viscous Flow through Multistage Turbomachiners,” Journal of Turbomachinery, Vol. 114, pp. 18-26, Jan. 1992.
[26] Dawes, W. N., “Toward Improved Through-Flow Capability: The Use of Three-Dimensional Viscous Flow Solvers in a Multistage Environment,” Journal of Turbomachinery, Vol. 114, No. 20, pp. 8-17, Jan. 1992.
[27] Chen, S. H., “The Flow Analysis of a Three-Dimensional Multistage Turbomachinery Blade Design,” Proceedings of the 6th International Symposium on Transport Phenomena and Dynamic of Rotating Machinery, Vol. 2, pp. 277-283, 1996.
[28] Chiu, Y. T., “Computational Fluid Dynamics Simulations of Hydraulic Energy Absorber,” Master Thesis, Virginia Polytechnic Institute and State University, July 1999.
[29] Watanabe, N., Miyamoto, S., Kuba, M., and Nakanishi, J., “The CFD Application for Efficient Designing in the Automotive Engineering,” SAE paper No. 011335, 2003.
[30] Dong, Y., Korivi, V., Attibele, P. and Yuan, Y., “Torque Converter CFD Engineering-Part 1: Torque Ratio and K Factor Improvement through Stator Modifications,” SAE paper No. 010883, 2002.
[31] Dong, Y., Korivi, V., Attibele, P. and Yuan, Y., “Torque Converter CFD Engineering-Part 2: Performance Improvement through Core Leakage Flow and Cavitation Control,” SAE paper No. 010884, 2002.
[32] Shin, S., Chang, H. and Athavale, M., “Numerical Investigation of the Pump Flow in an Automotive Torque Converter,” SAE paper No. 011056, 1999.
[33] Yang, S., Shin, S., Bae, I. and Lee, T., “A Computer-Integrated Design Strategy for Torque Converters using Virtual Modeling and Computational Flow Analysis,” SAE paper No. 011046, 1999.
[34] Shang, T., Zhao, D., Zhang, Y., Guo, X. and Shi, X., “Method of Internal 3D Flow Field Numerical Simulation for Hydrodynamic Torque Converter,” Journal of Jilin University (Engineering and Technology Edition), Vol. 36(2), pp. 199-203, 2006.
[35] Launder, B. E. and Spalding, D. B., “The Numerical Computation of Turbulent Flows,” Comp. Meth. Appl. Eng., Vol. 3, No. 2, pp. 269-289, 1974.
[36] Spalding, D. B., “Monograph on Turbulent Boundary Layer,” Imperial College, Mechanical Engineering, Depart. Rep. TWF/TN/33, 1967.
[37] Wolfshtein, M. W., “The Velocity and Temperature Distribution and Pressure Gradient,” Int. J. Heat and Mass Transfer, Vol. 12, pp. 301, 1969.
[38] Barth, T. J. and Jespersen, D., “The Design and Application of Upwind Schemes on Unstructured Meshes,” AIAA paper No. 890366, 1989.
[39] Patankar, S. V., “Numerical Heat Transfer,” Hemisphere, Washington, D.C., 1980.
[40] Rhie, C. M. and Chow, W. L., “A Numerical Study of the Turbulent Flow Past an Isolate Airfoil with Trailing Edge Separation,” AIAA paper No. 820998, 1982.
[41] “ANSYS CFX-Solver Release 10.0: Theory,” ANSYS, Inc., 2005.
[42] “Presentation of the al4 automatic transmission,” CITROËN UK LTD.
[43] 朱經昌, “液力變矩器的設計與計算,” 國防工業出版社, pp. 223-224, July-Sep. 1991.
[44] 馬文星, “液力傳動理論與設計,” 北京: 化學工業出版社, 2004.
[45] 湯同達, “運用多旋轉座標系統配合穩態流場變數交換的方法之數值模擬於流體機械的應用,” 第六屆全國計算流體力學學術研討會論文集, pp. 151-158, 1999.
[46] 韓永飛, “液力變矩器流場分析,” 吉林大學車輛工程研究所碩士論文, June 2007.
[47] 謝銘峻, “含對轉螺槳潛體之流場分析,” 成功大學航空太空工程研究所碩士論文, July 1999.
[48] 謝銘峻, “含吸力面薄膜冷卻渦輪靜子葉片的熱傳模擬,” 成功大學航空太空工程研究所博士論文, Feb. 2008.
[49] 蔡垂儒, “壓縮機葉片葉頂間隙流場之探討,” 成功大學航空太空工程研究所碩士論文, July 1997.
[50] 林辰岳, “高效率螺槳分析與測試,” 成功大學航空太空工程研究所碩士論文, July 2008.
[51] “維基百科,” (zh.wikipedia.org).