簡易檢索 / 詳目顯示

研究生: 潘嘉濠
Poon, Ka-Ho
論文名稱: 探討STEAM PBL課程對學生問題解決之影響:以線上行為觀測系統為工具
Investigating the Effectiveness of STEAM PBL on Students' Problem-Solving: Implementing an Online Behavioral Observation System
指導教授: 楊雅婷
Yang, Ya-Ting
學位類別: 碩士
Master
系所名稱: 社會科學院 - 教育研究所
Institute of Education
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 161
中文關鍵詞: STEAM專題導向學習問題解決線上行為觀測系統
外文關鍵詞: STEAM, project-based learning, problem-solving, behavioral observation system
相關次數: 點閱:132下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在開發STEAM project-based learning (PBL)課程中評量問題解決行為的觀課理論和介面COPPS (Classroom Observation Protocol for Problem Solving),並以德懷術與效標關聯效度確認其有效性。本研究邀請12位來自四種領域的專家參與德懷術問卷調查,包括對跨域課程有深入了解的大學教授、對高層次思考有深入了解的大學教授、具備中小學跨域課程教學經驗的在職教師、具備高層次思考研究經驗的在職教師。其後以問題解決量表(problem solving inventory, PSI)和新編問題解決測驗作為效標,驗證COPPS之效標關聯效度。此外,STEAM PBL可分為科際整合(interdisciplinary)和超學科(transdisciplinary)兩種跨域層次,因此本研究進一步探討兩者對學生問題解決之影響差異,希冀為STEAM PBL教學提供參考依據。
    研究對象為高雄市某國中二年級兩個班級共51名學生,進行15週實驗課程。自變項為不同層次STEAM PBL課程,分別為(1)科際整合STEAM PBL課程(實驗班1),以「減緩陸地縮減危機」為主題,對應聯合國永續發展目標第7項「人人可負擔的永續能源」及第13項「氣候變遷對策」;(2)超學科STEAM PBL課程(實驗班2),以「節省水資源」為主題,對應聯合國永續發展目標第3項「健全生活品質」、第7項「人人可負擔的永續能源」及第11項「永續城鄉」。依變項為學生問題解決(行為、態度與技能)。問題解決行為採用GORP線上行為觀測系統(Generalized Observation and Reflection Platform)建立COPPS介面,並於課程中選擇兩種情境進行課室觀察,分為講述(教師帶領學生初步探討問題情境,並學習重要概念)與實作(學生根據自行發想的作品設計圖,製作解決真實生活問題的作品)。問題解決態度採用問題解決量表(PSI)蒐集資料。問題解決技能採用新編問題解決測驗蒐集資料。資料分析方法採用相關分析和單變量共變數分析。研究結果顯示:
    一、12位德懷術專家對COPPS內容達成共識,顯示COPPS具有良好的專家效度。
    二、問題解決行為與問題解決態度、問題解決技能皆達顯著正向相關,顯示COPPS具有良好的效標關聯效度。
    三、超學科STEAM PBL課程比科際整合STEAM PBL課程更能提升學生問題解決行為。
    四、超學科STEAM PBL課程比科際整合STEAM PBL課程更能培養學生問題解決態度。
    五、超學科STEAM PBL課程比科際整合STEAM PBL課程更能提升學生問題解決技能。
    本研究證實COPPS具有良好效度,可觀察學生在STEAM PBL課程中的問題解決行為。未來教學者可運用COPPS評量學生問題解決行為,以優化STEAM PBL課程成效。本研究亦發現超學科STEAM PBL課程比科際整合STEAM PBL課程更能提升學生問題解決行為、態度與技能。建議未來教學者可實施超學科STEAM PBL課程,最後,本研究提出兩項建議,(1)本研究僅將COPPS作為總結性評量,並未涉及形成性評量。建議未來將COPPS數據即時回饋予教師和學生,促進STEAM PBL課程成效。(2)本研究只探討講述和實作兩種情境,未來研究可擴展探討發想、討論與發表等情境,深入了解學生問題解決行為在不同情境下的發生比例,以及相同情境下問題解決行為的縱貫變化趨勢,以作為精進課程教學參考。

    This study aims to investigate the effectiveness of STEAM Project-Based Learning (STEAM PBL) on students' problem-solving through the development of a classroom observation theory and a behavioral observation protocol, Classroom Observation Protocol for Problem Solving (COPPS), by combining an online behavioral observation system (Generalized Observation and Reflection Platform, GORP).
    A Delphi method with 12 experts was applied to verify the expert validity of COPPS. The criterion-related validity of COPPS was verified using the Problem-Solving Inventory (PSI) and the New Test of Problem Solving. A pretest and posttest quasiexperimental design was applied in this study, involving 51 eighth-grade students from two classes in a Kaohsiung City junior high school. Two classes received an experiment STEAM PBL courses for 15 weeks. The independent variable was STEAM PBL courses with two integration levels: (1) interdisciplinary STEAM PBL course (E1) and (2) transdisciplinary STEAM PBL course (E2). The dependent variables were students' problem-solving behaviors, attitudes, and skills. According to the purpose of this study, the research tools are the GORP system, Problem-Solving Inventory (PSI) and the New Test of Problem Solving. Data analysis involved correlation analysis and univariate analysis of covariance (ANCOVA) methods. The findings of the study are as follows:
    1. Twelve Delphi experts reached a consensus on the content of COPPS, indicating that COPPS demonstrates good expert validity.
    2. Problem-solving behaviors showed significant positive correlations with problem-solving attitudes and problem-solving skills, suggesting that COPPS has good criterion-related validity.
    3. The transdisciplinary STEAM PBL course was more effective in enhancing students' problem-solving behaviors compared to the interdisciplinary STEAM PBL course.
    4. The transdisciplinary STEAM PBL course was more effective in cultivating students' problem-solving attitudes compared to the interdisciplinary STEAM PBL course.
    5. The transdisciplinary STEAM PBL course was more effective in improving students' problem-solving skills compared to the interdisciplinary STEAM PBL course.

    目錄 VIII 表目錄 X 圖目錄 XI 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的及待答問題 9 第三節 名詞釋義 11 第二章 文獻探討 14 第一節 STEAM PBL課程 14 第二節 問題解決及其評量方式 22 第三節 問題解決行為觀課理論與介面開發 27 第三章 研究方法 31 第一節 以德懷術開發COPPS理論和介面 31 第二節 實驗設計 36 第三節 研究工具 46 第四節 資料分析方法 48 第四章 研究結果 49 第一節 以德懷術開發的COPPS之效度 49 第二節 不同層次STEAM PBL對問題解決之影響差異 57 第五章 研究討論、結論與建議 63 第一節 討論 63 第二節 研究結論 73 第三節 研究限制與未來建議 74 參考文獻 76 壹、中文文獻 76 貳、英文文獻 78 附錄一 問題解決量表(中文版) 90 附錄二 第一回合德懷術問卷 93 附錄三 第二回合德懷術問卷 107 附錄四 第三回合德懷術問卷 130 附錄五 問題解決觀課介面COPPS(Classroom Observation Protocol for Problem Solving)最終修訂版 150 附錄六 「新編問題解決測驗」使用同意書 161

    江俊儀(2021)。淺談國中跨域課程之發展。臺灣教育評論月刊,10(3),153-158。
    江靜宜(2009)。國中生家庭氣氛、挫折容忍力與其問題解決態度之相關研究。國立嘉義大學家庭教育與諮商研究所碩士論文,嘉義市。
    宋依倫(2021)。設計實境遊戲與教學以評量國小學童問題解決態度、學習成就、合作技巧與同儕互動。國立臺北教育大學自然科學教育學系碩士論文,台北市。
    呂秀蓮(2018)。下世代教育─STEAM新素養。清華教育,95,1-6。
    李懿芳、胡茹萍、宋修德(2021)。技術型高級中等學校跨域課程之理念與實踐。台灣教育研究期刊,2(2),53-70
    林生傳(2003),教育研究法:全方位的統整與分析。心理。
    林嘉雯(2017)。國中生參與得勝課程問題解決態度與學習滿意度之研究。國立臺東大學進修部暑期課程與教學碩專班碩士論文,台東縣。
    柯淇羚(2020)。國中生科技問題解決行為與能力指標之建構研究。國立臺灣師範大學科技應用與人力資源發展學系碩士論文,台北市。
    馮永敏、邢小萍(2016)。論國語文專業教師課室觀察的實施。國教新知,63(1),24-39。
    徐文男、黃淑貞、李宗洲、黃正發、姚麗吉、許美觀、黃嘉源、林美秀(2016)。 透過課室觀察提升有效教學。教育脈動,8,237-240。
    周淑卿、王郁雯(2019)。從課程統整到跨領域課程:台灣二十年的論述與問題。教育學報,47(2),41-59。
    陳玉娟(2014)。幼兒園內部行銷評估指標建構之研究。臺中教育大學學報:教育類,28(2),49-68。
    陳佩英(2018)。跨領域素養導向課程設計工作坊之構思與實踐。課程研究,13(2),21-42。https://doi:10.3966/181653382018091302002
    郭伯銓(2001)。應用全球資訊網培養國中學生問題解決能力之實驗研究。國立高雄師範大學工業科技教育學系碩士論文,高雄市。
    詹秀美(1989)。問題解決技能的訓練與評量。資優教育季刊,32,13-16。
    詹秀美、吳武典(2007),新編問題解決測驗。心理。
    黃茂在、陳文典(2004)。「問題解決」的能力。科學教育月刊,273,21-41。
    趙慧臣、陸曉婷(2016)。發展STEAM 教育,提高學生創新能力─訪美國STEAM 教育知名學者格雷特.亞克門教授。開放教育研究,22(5),4-10。
    桑顯舜、林淑梤(2019)。運用德懷術建立國小教師基本科學能力之評量要項。師資培育與教師專業發展期刊,12(1),29-58。
    教育部(2021)。十二年國民基本教育課程綱要總綱。https://www.naer.edu.tw/upload/1/16/doc/288/(111%E5%AD%B8%E5%B9%B4%E5%BA%A6%E5%AF%A6%E6%96%BD)%E5%8D%81%E4%BA%8C%E5%B9%B4%E5%9C%8B%E6%95%99%E8%AA%B2%E7%A8%8B%E7%B6%B1%E8%A6%81%E7%B8%BD%E7%B6%B1.pdf
    教育局(2015)。推動STEM教育 — 發揮創意潛能。https://www.edb.gov.hk/attachment/tc/curriculum-development/renewal/STEM/STEM%20Overview_c.pdf
    Aguilera, D., & Revilla, J. O. (2021). STEM vs. STEAM Education and Student Creativity: A Systematic Literature Review. Education Science, 11(7), 1-13. https://doi.org/10.3390/educsci11070331
    Anggoro, F. K., Dubosarsky, M., & Kabourek, S. (2021). Developing an Observation Tool to Measure Preschool Children’s Problem-Solving Skills. Education Science, 11(12), 1-18. https://doi.org/10.3390/educsci11120779
    Arcidiacono, G., Yang, K., Trewn, J., & Bucciareli, L. (2016). Application of Axiomatic Design for Project-based Learning Methodology. Procedia CIRP, 53, 166–172. https://doi: 10.1016/j.procir.2016.08.003
    Asgari, M., Miles, A. M., Lisboa, M. S., & Sarvary, M. A. (2021). COPUS, PORTAAL, or DART? Classroom Observation Tool Comparison from the Instructor User’s Perspective. Frontiers in Education, 6(740344), 1-14. https://doi.org/10.3389/feduc.2021.740344
    Association of American Colleges and Universities. (2022). Problem Solving Value Rubric. https://www.umass.edu/oapa/sites/default/files/pdf/tools/rubrics/problem_solving_value_rubric.pdf
    Baker, E. L., & Mayer, R. E. (1999). Computer-based assessment of problem solving. Computers in Human Behavior, 15, 269-282. https://doi.org/10.1016/S0747-5632(99)00023-0
    Belbase, S., Mainali, B. R., Kasemsukpipat, W., Tairab, H., Gochoo, M., & Jarrah, A. (2021). At the dawn of science, technology, engineering, arts, and mathematics (STEAM) education: prospects, priorities, processes, and problems. International Journal of Mathematical Education in Science and Technology, https://doi.org/10.1080/0020739X.2021.1922943
    Berry, R. (2008). Assessment for Learning. Hong Kong University Press.
    Bell, C. A., Dobbelaer, M. J., Klette, K., & Visscher, A. (2019). Qualities of classroom observation systems. School Effectiveness and School Improvement, 30(1), 3-29. https://doi.org/10.1080/09243453.2018.1539014
    Black, P., & William, D. (2009). Developing the theory of formative assessment. Educational Assessment, Evaluation and Accountability, 21, 5-31. https://doi.org/10.1007/s11092-008-9068-5
    Bush, S. B., & Cook, K. L. (2019). Structuring STEAM Inquiries: Lessons Learned from Practice. In M. S. Khine & S. Areepattamannil (Eds.), STEAM Education (pp. 143-164). Springer. https://doi.org/10.1007/978-3-030-04003-1_2
    Chalkiadaki. (2018). A Systematic Literature Review of 21st Century Skills and Competencies in Primary Education. International Journal of Instruction, 11(3), 1-16. https://doi.org/10.12973/iji.2018.1131a
    Chiu, B., Randles, C., & Irby, S. (2022). Analyzing Student Problem-Solving with MAtCH. Frontiers in Education, 6, 1-14. https://doi.org/10.3389/feduc.2021.769042
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
    Drake, S. M., & Burns, R. C. (2004). Meeting standards through integrated curriculum. Virginia USA: Association for Supervision and Curriculum Development.
    Dostál, J. (2015). Theory of problem solving. Procedia - Social and Behavioral Sciences, 174, 2798-2805. https://doi.org/10.1016/j.sbspro.2015.01.970
    Eddy, S. L., Converse, M., & Wenderoth, M. P. (2015). PORTAAL: A Classroom Observation Tool Assessing Evidence-Based Teaching Practices for Active Learning in Large Science, Technology, Engineering, and Mathematics Classes. CBE—Life Sciences Education, 14, 1-16. https://doi.org/10.1187/cbe-14-06-0095
    Eliyasni, R., Kenedi, A. K., & Sayer, I. M. (2019). Blended Learning and Project Based Learning: The Method to Improve Students’ Higher Order Thinking Skill (HOTS). Jurnal Iqra': Kajian Ilmu Pendidikan, 4(2), 231-248. https://doi.org/10.25217/ji.v4i2.549
    European Commission. (2016). A New Skills Agenda for Europe. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52016DC0381&from=EN
    European Commission. (2020). European Skills Agenda for Sustainable Competitiveness, Social Fairness and Resilience. https://ec.europa.eu/social/
    main.jsp?langId=en&catId=89&furtherNews=yes&newsId=9723
    Finnish National Board of Education. (2016). National core curriculum for basic education 2014. Helsinki, Finland: Finnish National Agency for Education.
    Fischer, A., & Neubert, J. C. (2015). The Multiple Faces of Complex Problems: A Model of Problem-Solving Competency and its Implications for Training and Assessment. Journal of Dynamic Decision Making, 1(6), 1–14. https://doi.org/10.11588/jddm.2015.1.23945.
    Funke, J., & Fischer, A., & Holt, D. (2018). Competencies for Complexity: Problem Solving in the Twenty-First Century. In E. Care et al. (eds.), Assessment and Teaching of 21st Century Skills (pp.41-53). Springer. https://doi.org/10.1007/978-3-319-65368-6_3
    Garcia, C., Argelagós, E., & Privado, J. (2020). Assessment of higher education students’ information problem solving skills in educational sciences. Information Development, 1(61), 1-17. https://doi.org/10.1177/0266666920976189
    Generalized Observation and Reflection Platform (GORP), University of California-Davis, (2018). Available at: https://cee.ucdavis.edu/GORP.
    Gibbs, P. (2015). Transdisciplinarity as epistemology, ontology or principles of practical judgment. In P. Gibbs (Ed.), Transdisciplinary professional learning and practice (pp. 151–164). London: Springer International Publishing.
    Guyotte, K. W., Sochacka, N. W., Costantino, T. E., Walther, J. & Kellam, N. N. (2015). STEAM as social practice: Cultivating creativity in transdisciplinary spaces. Art Education, 67(6), 12–19. https://doi.org/10.1080/00043125.2014.11519293
    Guo, P., Saab, N., Post, L. S., & Admiral, W. (2020). A review of project-based learning in higher education: Student outcomes and measures. International Journal of Educational Research, 102, 1-13. https://doi.org/10.1016/j.ijer.2020.101586
    Haesen, S., & Van de Put, E. (2018). STEAM education in Europe: A comparative analysis report. EuroSTEAM. https://www.eurosteamproject.eu/res/Comparative_analysis_report_vlatest.pdf
    Hanif, S., Wijaya, C. A. F., Winarno, N. (2019). Enhancing Students’ Creativity through STEM Project-Based Learning. Journal of Science Learning, 2(2), 50-57. https://doi.org/10.17509/jsl.v2i2.13271
    Harris, M. J. (2014). The challenges of implementing project-based learning in middle schools [Doctoral dissertation, Pittsburgh University]. https://www.researchgate.net/publication/282259696_The_Challenges_of_Implementing_Project-based_Learning_in_Middle_Schools
    Hanushek, E. A., Jamison, D. T., Jamison, E. A., & Woessmann, L. (2008). Education and economic growth: It’s not just going to school but learning that matters. Education Next, 8(2), 62–70.
    He, Q., Borgonovi, F., & Paccagnella, M. (2019). Using process data to understand adults' problem-solving behaviour in the programme for the international assessment of adult competencies (PIAAC): Identifying generalised patterns across multiple tasks with sequence mining. OECD Education Working Papers, 205, 1-50. https://doi.org/10.1787/650918f2-en
    Henriksen, D., Mehta, R., & Mehta, S. (2019). Design Thinking Gives STEAM to Teaching: A Framework That Breaks Disciplinary Boundaries. In M. S. Khine & S. Areepattamannil (Eds.), STEAM Education (pp. 143-164). Springer. https://doi.org/10.1007/978-3-030-04003-1_2
    Henton, J., Marotz-Baden, R., & Kieren, D. (1979). Problem Solving in the Classroom. National Council on Family Relations, 28(1), 61-66. https://doi.org/10.2307/583269
    Heppner, P. P., & Petersen, C. H. (1982). The Development and Implications of a Personal Problem-Solving Inventory. Journal of Counseling Psychology, 29(1), 66-75. https://doi.org/10.1037/0022-0167.29.1.66
    Herro, D. & Quigley, C. (2017) Exploring teachers’ perceptions of STEAM teaching through professional development: implications for teacher educators. Professional Development in Education, 43(3), 416-438. https://doi.org/10.1080/19415257.2016.1205507
    Hsiao, J. C., Chen, S. K., Chen, W., & Lin, S. S. (2022). Developing a plugged-in class observation protocol in high-school blended STEM classes: Student engagement, teacher behaviors and student-teacher interaction patterns. Computers & Education, 178, 104403. https://doi.org/10.1016/j.compedu.2021.104403
    Hsiao, P. W., & Su, C. H. (2021). A Study on the Impact of STEAM Education for Sustainable Development Courses and its Effects on Student Motivation and Learning. Sustainability, 13(3772), 1-24. https://doi.org/10.3390/su13073772
    Huang, N. T. N., Chiu, L. J., & Hong, J. C. (2015). Relationship Among Students’ Problem-Solving Attitude, Perceived Value, Behavioral Attitude, and Intention to Participate in a Science and Technology Contest. International Journal of Science and Mathematics Education, 14, 1419-1435. https://doi.org/10.1007/s10763-015-9665-y
    Jacobs, H. H. (1989). Interdisciplinary curriculum: Design and implementation. Alexandria, VA: Association for Supervision and Curriculum Development. ERIC. https://eric.ed.gov/?id=ED316506
    Jaenudin, D., Kurniasih, S., & Amalia, G. R. (2020). Improving Students Ability in Problem Solving and Creativity Through Project-Based Learning. 4th Asian Education Symposium (AES 2019). https://doi.org/10.2991/assehr.k.200513.058
    Jalinus, N., Syahril., Nabawi, R. A. (2019). A Comparison of the Problem-solving Skills of Students in PjBL Versus CPjBL Model: An Experimental Study. Journal of Technical Education and Training, 11(1), 36-43. https://doi.org/10.30880/jtet.2019.11.01.005
    Jenkinson, C., Wright, L., & Coulter, A. (1994). Criterion validity and reliability of the SF-36 in a population sample. Quality of Life Research, 3. 7-12.
    Kezar, A., & Maxey, D. (2016). The Delphi technique: an untapped approach of participatory research. Inter¬national Journal of Social Research Methodology, 19(2), 143–160. https://doi.org/10.1080/13645579.2014.936737
    Khine, M. S., Areepattamannil, S. (2019). STEAM Education. Springer. https://doi.org/10.1007/978-3-030-04003-1_2
    Kirn, A., & Benson, L. (2018). Engineering Students' Perceptions of Problem Solving and their Future. Journal of Engineering Education, 107,1. 87-112. https://doi.org/10.1002/jee.20190
    Kirschbaum, M., Barnett, T., & Cross, M.Q. (2019). Q sample construction: a novel approach incorporating a Delphi technique to explore opinions about codeine dependence. BMC Medical Research Methodology, 19(101), 1-12. https://doi.org/10.1186/s12874-019-0741-9
    Krkovic, K., Mustafic, M., Wüstenberg, S., & Greiff, S. (2018). Shifts in the Assessment of Problem Solving. In E. Care, P. Griffin & M. Wilson (Eds.), Assessment and Teaching of 21st Century Skills (pp. 55-73). Springer. https://doi.org/10.1007/978-3-030-04003-1_2
    Laboy-Rush, D. L. (2015, November 15). Integrated STEM Education through Project-Based Learning. Learning.com. https://studentsatthecenterhub.org/resource/integrated-stem-education-through-project-based-learning/
    Lam, R. (2018). Understanding Assessment as Learning in Writing Classrooms: The Case of Portfolio Assessment. Iranian Journal of Language Teaching Research, 6(3), 19-36.
    Lenoir, Y., François, L., & Geoffroy, Y. (2000). Interdisciplinary practices in primary education in Quebec: Results from ten years of research. Issues in Integrative Studies, 18, 89–114.
    Lin, H. (2022). The Influence Mechanism of High School English Grammar Science, Technology, Engineering, Art, and Mathematics Teaching Model on High School Students’ Learning Psychological Motivation. Frontiers in Psychology, 13(917167), 1-10. https://doi.org/10.3389/fpsyg.2022.917167
    Mahanal, S., Zubaidah, S., Setiawan, D., Maghfiroh, H., & Muhaimin, F. G. (2022). Empowering College Students’ Problem-Solving Skills through RICOSRE. Education Science, 12(3), 1-17. https://doi.org/10.3390/educsci11120779
    McPherson, S., Reese, C., & Wendler, M. C. (2018). Methodology Update Delphi Studies. Nursing Research, 67(5), 404-410.
    Merrill, K. L., Smith, S. W., Cumming, M. M., & Daunic, A. P. (2017). A Review of Social Problem-Solving Interventions: Past Findings, Current Status, and Future Directions. Review of Educational Research, 87 (1), 71–102. https://doi.org/10.3102/0034654316652943.
    Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.
    Mutakinati, L., Anwari, I., & Kumano, Y. (2018). Analysis of Students’ Critical Thinking Skill of Middle School through STEM Education Project-Based Learning. Jurnal Pendidikan IPA Indonesia, 7(1), 54-65. https://doi.org/10.15294/jpii.v7i1.10495
    Ng, M. C. W. (2018). Assessment for/as learning in Hong Kong English language classrooms: A review. International Journal of Research in English Education, 3(3), 1-12. https://doi.org/10.29252/ijree.3.3.1
    Nicolescu, B. (1997, November). The transdisciplinary evolution of the university: Condition for sustainable development. http://ciret-transdisciplinarity.org/bulletin/b12c8.php
    Nworie, J. (2011). Using the Delphi technique in educational technology research. TechTrends, 55(5), 24-30. https://doi.org/10.1007/s11528-011-0524-6
    OECD (2001), Education Policy Analysis 2001, OECD Publishing, Paris, https://doi.org/10.1787/epa-2001-en.
    Omar, N., Mohamad, M. M., Mukhtar, M. I., & Paimin, A. N. (2019). Influence of Cognitive, Affective, and Conative Elements in Promoting Engineering Problem Solving Skills. Journal of Technical Education and Training, 11(2), 23-31. https://doi.org/10.30880/jtet.2019.11.02.003
    O'Leary, M. (2013). Classroom observation: A guide to the effective observation of teaching and learning. Routledge. https://doi.org/10.4324/9780203119730
    Owens, M. T., Seidel, S. B., Wong, M., Bejines, T. E., Lietz, S., Perez, J. R., et al. (2017). Classroom Sound Can Be Used to Classify Teaching Practices in College Science Courses. Proc. Natl. Acad. Sci. U S A, 114 (12), 3085–3090. https://doi.org/10.1073/pnas.1618693114
    Ozkan, G., & Topsakal, U. U. (2019). Exploring the effectiveness of STEAM design processes on middle school students’ creativity. International Journal of Technology and Design Education. 31, 1-22. https://doi.org/10.1007/s10798-019-09547-z
    Ozolins, U., Hale, S., Cheng, X., Hyatt, A., & Schofield, P. (2020). Translation and back-translation methodology in health research – A critique. Expert Review of Pharmacoeconomics & Outcomes Research, 20(1), 69-77. https://doi.org/10.1080/14737167.2020.1734453
    Partnership for 21st Century Learning. (2023, June 22). Our mission is to realize the power and promise of 21st century learning for every student—in early learning, in school, and beyond school—across the country and around the globe. http://www.p21.org/ storage/documents/docs/P21_framework_0116.pdf.
    Priemer, B., Eilerts, K., Filler, A., Pinkwart, N., Rösken-Winter, B., Tiemann, R., & Belzen, A. U. Z. (2020). A Framework to Foster Problem Solving in STEM and Computing Education. Research in Science & Technological Education, 38(1), 105-130. https://doi.org/10.1080/02635143.2019.1600490
    Quigley, C, F., Herro, D., & Baker, A. (2019). Moving Toward Transdisciplinary Instruction: A Longitudinal Examination of STEAM Teaching Practices. In M. S. Khine & S. Areepattamannil (Eds.), STEAM Education (pp. 143-164). Springer. https://doi.org/10.1007/978-3-030-04003-1_2
    Ralph, R. A. (2015). Post secondary project-based learning in science, technology, engineering and mathematics. Journal of Technology and Science Education, 6 (1), 26-35. https://doi.org/10.3926/jotse.155
    Sadeghi, K., & Rahmati, T. (2017). Integrating assessment as, for, and of learning in a large-scale exam preparation course. Assessing Writing, 34, 50-61. https://doi.org/10.1016/j.asw.2017.09.003
    Sarmiento, C. P., Morales, M. E., Elipane, L. E., & Palomar, B. C. (2020). Assessment practices in Philippine higher STEAM education. Journal of University Teaching & Learning Practice, 17(5), 1-17. https://doi.org/10.53761/1.17.5.18
    Schoppek, W., & Fischer, A. (2015). Complex Problem Solving – Single Ability or Complex Phenomenon? Frontiers in Psychology, 6(1669), 1–4. https://doi.org/10.3389/fpsyg.2015.01669.
    Schweizer, F., Wüstenberg, S., & Greiff, S. (2013). Validity of the MicroDYN approach: Complex problem solving predicts school grades beyond working memory capacity. Learning and Individual Differences, 24, 42–52. https://doi.org/10.1016/j.lindif.2012.12.011
    Sekayi, D., & Kennedy, A. (2017). Qualitative Delphi Method: A Four Round Process with a Worked Example. The Qualitative Report, 22(10), 2755-2763. https://doi.org/10.46743/2160-3715/2017.2974.
    Shin, M. H. (2018). Effects of Project-Based Learning on Students' Motivation and Self-Efficacy. English Teaching, 73(1), 95-114. https://doi.org/10.15858/engtea.73.1.201803.95
    Shute. V. J., & Emihovich. B. (2018). Assessing Problem-Solving Skills in Game-Based Immersive Environments. In J. Voogt et al. (Eds.), Second Handbook of Information Technology in Primary and Secondary Education (pp. 636-648). Springer International Handbooks of Education. https://doi.org/10.1007/978-3-319-71054-9_40
    Smith, M. K., JonesJonesGilbert, F. H. Sarah. L., Gilbert, S. L., & Wieman, C. E. (2013). The Classroom Observation Protocol for Undergraduate STEM (COPUS): A New Instrument to Characterize university STEM Classroom Practices. CBE Life Sci. Educ, 12 (4), 618–627. https://doi.org/10.1187/cbe.13-08-0154
    Soros, P., Ponkham, K., & Ekkapim, S. (2018, January). The results of STEM education methods for enhancing critical thinking and problem-solving skill in physics the 10th grade level. Paper presented at the meeting of International Conference for Science Educators and Teachers (ISET) 2017.
    Stember, M. (1991). Advancing the social sciences through the interdisciplinary enterprise. Social Science Journal, 28(1), 1-14. https://doi.org/10.1016/0362-3319(91)90040-B
    Stroud, A., & Baines, L. (2019). Inquiry, Investigative Processes, Art, and Writing in STEAM. In M. S. Khine & S. Areepattamannil (Eds.), STEAM Education (pp. 143-164). Springer. https://doi.org/10.1007/978-3-030-04003-1_2
    Szabo, Z, K., Körtesi, P., Guncaga, J., Szabo, D., & Neag, R. (2020). Examples of Problem-Solving Strategies in Mathematics Education Supporting the Sustainability of 21st-Century Skills. Sustainability, 12, 1-28. https://doi.org/10.3390/su122310113
    Teichert, M. A., Schroeder, M. J., Lin, S., Dillner, D. K., Komperda, R., & Bunce, D. M. (2019). Problem-Solving Behaviors of Different Achievement Groups on Multiple-Choice Questions in General Chemistry. J. Chem. Educ. 2020(97). 3-15. https://doi.org/10.1021/acs.jchemed.9b00774
    Thomas, J. W. (2000). A review of the research on project-based learning. San Rafael, CA: Autodesk Foundation. http://www.bobpearlman.org/BestPractices/PBL_Research.pdf
    Toma, R. B., & Greca, I. M. (2018). The Effect of Integrative STEM Instruction on Elementary Students’ Attitudes toward Science. Eurasia Journal of Mathematics, Science and Technology Education, 14(4), 1383-1395. https://doi.org/10.29333/ejmste/83676
    Tsai, M. H., & Tang, Y. C. (2017). Learning attitudes and problem-solving attitude for blend problem-based learning. Library Hi Tech, 35(4), 615-628. https://doi.org/10.1108/LHT-06-2017-0102
    Ünal, M., & Aral, N. (2014). Development of the Problem Solving Scale in Science Education (PSSSE): The Reliability and Validity Study. Education and Science, 39(176), 267-278. https://doi.org/10.15390/EB.2014.3585
    Videla, R., Aguayo, C., & Veloz, T. (2021). From STEM to STEAM: An Enactive and Ecological Continuum. Frontiers in Education, 6, 1-17. https://doi.org/10.3389/feduc.2021.709560
    Wang, Y., & Lu, H. (2021). Validating items of different modalities to assess the educational technology competency of pre-service teachers. Computers & Education, 162(2021), 1-14. https://doi.org/10.1016/j.compedu.2020.104081
    Widowati, A., Nurohman, S., & Anjarsari, P. (2017). Developing Science Learning Material with Authentic Inquiry Learning Approach to Improve Problem Solving and Scientific Attitude. Indonesia Society and Science Educators, 6(1), 32–40. http://doi.org/10.15294/jpii.v6i1.4851
    Yakman, G., & Lee, H. (2012). Exploring the exemplary STEAM education in the US as a practical educational framework for Korea. Journal of The Korean Association for Science Education. 32(6), 1072–1086. https://doi.org/10.14697/jkase.2012.32.6.1072
    Zarei, M., Zeinalipour, H., & Samavi, A. (2022). Identifying the Components of STEAM Teaching for Children. International Journal of Pediatrics, 10 (3), 15675-15681. https://doi.org/10.22038/IJP.2021.56441.4437

    無法下載圖示 校內:2028-08-04公開
    校外:2028-08-04公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE