簡易檢索 / 詳目顯示

研究生: 陳譽庭
Chen, Yu-Ting
論文名稱: 探討心肌病變中CEBPD與自噬作用的特徵
Characterization of CEBPD-associated autophagy in cardiomyopathy
指導教授: 劉秉彥
Liu, Ping-Yen
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 47
中文關鍵詞: 阿黴素CCAAT/增強子結合蛋白δ自噬作用metformin
外文關鍵詞: Doxorubicin, C/EBP δ, Autophagy, Metformin
相關次數: 點閱:49下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 心臟衰竭是心血管疾病的死亡率主要的原因之一。阿黴素Doxorubicin (DOX)為一治療癌症的化療藥物,但其副作用會造成心肌病變最後導致心臟衰竭。DOX所引發之心臟衰竭的動物模型常被用來探討其在心臟的作用機轉及發展新的治療方法。先前研究指出當自噬作用被抑制時,DOX所引發的心肌死亡現象會被大幅下降。CCAAT/增強子結合蛋白δ --CCAAT/enhancer binding protein (C/EBP)家族中的其中一員—C/EBP δ為一轉錄因子,一般條件下,其在細胞的表現量低,但一但受到刺激,便會大量表現。在我們之前的研究中,我們發現cebpd-/-的老鼠在經過DOX的施打之後心臟的傷害相較於WT老鼠輕。在先前的研究也有指出在施予metformin 後C/EBP δ可以活化癌症細胞的自噬作用。因此,我們將研究在DOX若引發了自噬作用時,C/EBP δ在H9c2細胞株及老鼠心肌細胞所扮演的角色。我們發現在H9c2細胞株施予DOX之後,C/EBP δ的表現量會隨著AMP-activated protein kinase (AMPK)失去活性而降低,而自噬作用則會被DOX所誘發。動物實驗上,在施打了DOX之後,cebpd-/-的老鼠心肌則表現了較少的自噬作用,我們認為有其他器官的回饋調控的可能性會影響到心肌細胞自噬作用的表現。Metformin被認為是一個AMPK的活化劑,其可以拮抗C/EBP δ降低表現量的現象,並且讓細胞免於受到自噬作用甚至細胞凋亡。在AMPK的抑制劑實驗中,C/EBP δ表現量隨著AMPK或性下降而降低,因此我們認為AMPK可能是C/EBP δ的上游調控因子。在未來的研究與應用方面,應著重於動物實驗中metformin對C/EBP δ的影響,單一使用metformin或合併使用其他可調控C/EBP δ之藥物時,將能否提升DOX治療癌症病患的穩定性。

    Heart failure is one of the leading causes of cardiovascular mortality in the world. Doxorubicin (DOX), though a useful medicine for chemotherapy for cancer treatment, can also induce cardiomyopathy and finally heart failure. Besides that, DOX-induced heart failure in mice is a commonly used animal model to explore the mechanism and therapeutic tools. DOX-induced autophagy in cardiomyocytes was shown to be detrimental, and inhibiting autophagy with a chemical or genetic approach dramatically attenuated DOX-induced cardiomyocyte death. C/EBP δ belongs to the CCAAT/enhancer binding protein (C/EBP) family of transcription factors. In our lab, we showed that cebpd-/- mice encountered less cardiac injury in the first 2 weeks after last doxorubicin treatment. Previous studies also characterized the role of C/EBP δ in autophagy activation by metformin treatment. Our research aim is to study the DOX-induced autophagy in H9c2 and mouse cardiomyocytes, thus to test the role of C/EBP δ in DOX-associated cardiomyopathy. We found that C/EBP δ was down-regulated in doxorubicin treatment through AMPK inactivation and led to autophagy and apoptosis increased. In animal experiment, cebpd-/- mice showed less autophagy. We consider that feedback regulation of other organs in cebpd-/- mice could control autophagy in cardiomyocyte. Metformin, as an AMPK activator, could reverse the attenuation of C/EBP δ and rescue H9c2 from autophagy then apoptosis. In AMPK inhibitor experiment, C/EBP δ was down regulated in a dosage-depend manner. This indicated that AMPK is an up-stream regulator of C/EBP δ. In future research and application, animal experiment should be focus on the regulation of C/EBP δ by metformin. In addition, we hoped to demonstrate the treatment with metformin or combined with other C/EBP δ-regulation drug would increase the stability of cancer therapy with DOX.

    摘要 I Abstract III 致謝 V Contents VII Abbreviations 1 Introduction 3 Heart failure and cardiomyopathy 3 Doxorubicin (DOX) causes cardiotoxicity and autophagy 3 Autophagy 5 CCAAT/enhancer binding protein 6 CCAAT/enhancer binding protein and metformin 7 Hypothesis 8 Specific aims 8 Materials and Methods 9 DOX –induced HF mice model 9 Immunochemistry (IHC) stain 9 H9c2 cell culture 10 cebpd siRNA knockdown 11 Bicinchoninic acid (BCA) protein assay 11 Western blot 12 Statistical analysis 13 Results 14 1. C/EBP δ reduced in H9c2 after doxorubicin treatment. 14 2. C/EBP δ was induced after metformin treatment. 14 3. C/EBP δ was up-regulated after compound c treatment. 15 4. DOX-induced apoptosis was reversed after metformin treatment. 15 5. LC3 and puncta expression were reduced in cebpd-/- mice after doxorubicin treatment. 16 6. C/EBP δ and autophagy were both enhanced on dilated cardiomyopathy hearts. 16 Discussion 18 References 23 Figures and figure legends 28 Figure 1.Reduced C/EBP δ and increased expression of autophagy markers were observed after DOX treatment. 28 Figure 2. The expression of C/EBP δ was enhanced and the autophagy expression was attenuated after metformin treatment. 30 Figure 3. The expression of C/EBP δ was reduced and autophagy expression was increased after compound c treatment. 31 Figure 5. Metformin treatment reversed the attenuated expression of C/EBP δ and the induction of autophagy and apoptosis in doxorubicin treatment. 33 Figure 6. LC3 was down regulated in cebpd-/- mice after doxorubicin treatment. 35 Figure 7.The expression of puncta, representative of autophagy, was at a lower level in cebpd-/- mice after doxorubicin therapy. 36 Figure 8. C/EBP δ and autophagy were both enhanced on dilated cardiomyopathy heart. 38 Figure 9. cebpd knockdown compare to the control group. 39

    Argun, M., Üzüm, K., Sönmez, M. F., Özyurt, A., Karabulut, D., Soyersarıca, Z., . . . Baykan, A. (2016). Cardioprotective effect of metformin against doxorubicin cardiotoxicity in rats. Anatol J Cardiol, 16, 234-241.
    Asensio-López, M. C., Lax, A., Pascual-Figal, D. A., Valdés, M., & Sánchez-Más, J. (2011). Metformin protects against doxorubicin-induced cardiotoxicity: involvement of the adiponectin cardiac system. Free Radical Biology and Medicine, 51(10), 1861-1871.
    Bahrami, A. H., Lin, M. G., Ren, X., Hurley, J. H., & Hummer, G. (2017). Scaffolding the cup-shaped double membrane in autophagy. PLoS computational biology, 13(10), e1005817.
    Cardinale, D., Colombo, A., Bacchiani, G., Tedeschi, I., Meroni, C. A., Veglia, F., . . . Curigliano, G. (2015). Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation, CIRCULATIONAHA. 114.013777.
    Chandrasekera, P. C., & Pippin, J. J. (2015). The human subject: an integrative animal model for 21st century heart failure research. American journal of translational research, 7(9), 1636.
    Dutta, D., Xu, J., Dirain, M. L., & Leeuwenburgh, C. (2014). Calorie restriction combined with resveratrol induces autophagy and protects 26-month-old rat hearts from doxorubicin-induced toxicity. Free Radic Biol Med, 74, 252-262. doi:10.1016/j.freeradbiomed.2014.06.011
    Gao, H., Bryzgalova, G., Hedman, E., Khan, A., Efendic, S., Gustafsson, J.-A. k., & Dahlman-Wright, K. (2006). Long-Term Administration of Estradiol Decreases Expression of Hepatic Lipogenic Genes and Improves Insulin Sensitivity in ob/ob Mice: A Possible Mechanism Is through Direct Regulation of Signal Transducer and Activator of Transcription 3. Molecular Endocrinology, 20(6), 1287-1299. doi:10.1210/me.2006-0012
    Ghigo, A., Li, M., & Hirsch, E. (2016). New signal transduction paradigms in anthracycline-induced cardiotoxicity. Biochim Biophys Acta, 1863(7 Pt B), 1916-1925. doi:10.1016/j.bbamcr.2016.01.021
    Go, A. S., Mozaffarian, D., Roger, V. L., Benjamin, E. J., Berry, J. D., Blaha, M. J., . . . Fox, C. S. (2014). Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation, 129(3), e28.
    Green, A. S., Chapuis, N., Trovati Maciel, T., Willems, L., Lambert, M., Arnoult, C., . . . Tamburini, J. (2010). The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation. Blood, 116(20), 4262-4273. doi:10.1182/blood-2010-02-269837
    Huang, G. N., Thatcher, J. E., McAnally, J., Kong, Y., Qi, X., Tan, W., . . . Hill, J. A. (2012). C/EBP transcription factors mediate epicardial activation during heart development and injury. Science, 338(6114), 1599-1603.
    Johansen, T., & Lamark, T. (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy, 7(3), 279-296.
    Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., . . . Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO Journal, 19(21), 5720-5728. doi:doi:10.1093/emboj/19.21.5720
    Kawaguchi, T., Takemura, G., Kanamori, H., Takeyama, T., Watanabe, T., Morishita, K., . . . Minatoguchi, S. (2012). Prior starvation mitigates acute doxorubicin cardiotoxicity through restoration of autophagy in affected cardiomyocytes. Cardiovascular Research, 96(3), 456-465. doi:10.1093/cvr/cvs282
    Kim, J., Kundu, M., Viollet, B., & Guan, K.-L. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology, 13, 132. doi:10.1038/ncb2152
    Klubo-Gwiezdzinska, J., Costello, J. J., Patel, A., Bauer, A., Jensen, K., Mete, M., . . . Vasko, V. (2013). Treatment With Metformin Is Associated With Higher Remission Rate in Diabetic Patients With Thyroid Cancer. The Journal of Clinical Endocrinology & Metabolism, 98(8), 3269-3279. doi:10.1210/jc.2012-3799
    Kobayashi, S., Volden, P., Timm, D., Mao, K., Xu, X., & Liang, Q. (2010). Transcription factor GATA4 inhibits doxorubicin-induced autophagy and cardiomyocyte death. J Biol Chem, 285(1), 793-804. doi:10.1074/jbc.M109.070037
    Kumar, A., Gautam, B., Dubey, C., & Tripathi, P. K. (2014). A review: role of doxorubicin in treatment of cancer. International Journal of Pharmaceutical Sciences and Research, 5(10), 4105.
    Luft, F. C. (2015). C/EBPβ LIP induces a tumor menagerie making it an oncogene. Journal of Molecular Medicine, 93(1), 1-3.
    Liu, P. Y., Wen, J. T., Hsu, L. W. (2016). CCAAT/enhancer binding protein delta contributes to an earlier phase of pro-inflammatory response in doxorubicin related cardiomyopathy. Journal of the American College of Cardiology, 67, 1494.
    Nair, U., Yen, W. L., Mari, M., Cao, Y., Xie, Z., Baba, M., . . . Klionsky, D. J. (2012). A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy, 8(5), 780-793. doi:10.4161/auto.19385
    Raj, S., Franco, V. I., & Lipshultz, S. E. (2014). Anthracycline-induced cardiotoxicity: a review of pathophysiology, diagnosis, and treatment. Current treatment options in cardiovascular medicine, 16(6), 315.
    Ramji, D. P., & Pelagia, F. (2002). CCAAT/enhancer-binding proteins: structure, function and regulation. Biochemical Journal, 365(3), 561-575.
    Shi, W. Y., Xiao, D., Wang, L., Dong, L. H., Yan, Z. X., Shen, Z. X., . . . Zhao, W. L. (2012). Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death &Amp; Disease, 3, e275. doi:10.1038/cddis.2012.13
    Singal, P. K., & Iliskovic, N. (1998). Doxorubicin-induced cardiomyopathy. New England Journal of Medicine, 339(13), 900-905.
    Takata, Y. (2002). Vascular Inflammation Is Negatively Autoregulated by Interaction Between CCAAT/Enhancer-Binding Protein-delta and Peroxisome Proliferator-Activated Receptor-gamma. Circulation Research, 91(5), 427-433. doi:10.1161/01.res.0000031271.20771.4f
    Tang, Z.-H., Chen, X., Wang, Z.-Y., Chai, K., Wang, Y.-F., Xu, X.-H., . . . Chen, X.-P. (2016). Induction of C/EBP homologous protein-mediated apoptosis and autophagy by licochalcone A in non-small cell lung cancer cells. Scientific reports, 6, 26241.
    Tsai, H.-H., Lai, H.-Y., Chen, Y.-C., Li, C.-F., Huang, H.-S., Liu, H.-S., . . . Wang, J.-M. (2017). Metformin promotes apoptosis in hepatocellular carcinoma through the CEBPD-induced autophagy pathway. Oncotarget, 8(8), 13832.
    Wang, G.-Y., Bi, Y.-G., Liu, X.-D., Zhao, Y., Han, J.-F., Wei, M., & Zhang, Q.-Y. (2017). Autophagy was involved in the protective effect of metformin on hyperglycemia-induced cardiomyocyte apoptosis and Connexin43 downregulation in H9c2 cells. International journal of medical sciences, 14(7), 698.
    Wang, X., Wang, X.-L., Chen, H.-L., Wu, D., Chen, J.-X., Wang, X.-X., . . . Cen, X. (2014). Ghrelin inhibits doxorubicin cardiotoxicity by inhibiting excessive autophagy through AMPK and p38-MAPK. Biochemical pharmacology, 88(3), 334-350.
    Xie, Z., Lau, K., Eby, B., Lozano, P., He, C., Pennington, B., . . . Tian, R. (2011). Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes, 60(6), 1770-1778.
    Xu, X., Bucala, R., & Ren, J. (2013). Macrophage migration inhibitory factor deficiency augments doxorubicin-induced cardiomyopathy. J Am Heart Assoc, 2(6), e000439. doi:10.1161/JAHA.113.000439
    Yin, M., van der Horst, I. C., van Melle, J. P., Qian, C., van Gilst, W. H., Silljé, H. H., & de Boer, R. A. (2011). Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 301(2), H459-H468.
    Zhang, Y. Y., Meng, C., Zhang, X. M., Yuan, C. H., Wen, M. D., Chen, Z., . . . Zhang, Z. (2015). Ophiopogonin D attenuates doxorubicin-induced autophagic cell death by relieving mitochondrial damage in vitro and in vivo. J Pharmacol Exp Ther, 352(1), 166-174. doi:10.1124/jpet.114.219261
    Zheng, L., Yang, W., Wu, F., Wang, C., Yu, L., Tang, L., . . . Wang, H. (2013). Prognostic Significance of AMPK Activation and Therapeutic Effects of Metformin in Hepatocellular Carcinoma. Clinical Cancer Research. doi:10.1158/1078-0432.ccr-13-0203

    下載圖示 校內:2023-08-29公開
    校外:2023-08-29公開
    QR CODE