| 研究生: |
劉毓哲 Liu, Yu-Che |
|---|---|
| 論文名稱: |
低溫下遷移率與次臨界擺盪之探討 Study of the cryogenic effects on mobility and subthreshold swing |
| 指導教授: |
江孟學
Chiang, Meng-Hsueh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 金氧半場效電晶體 、40奈米製程 、BSIM bulk模型 、次臨界擺盪 、遷移率 、低溫 |
| 外文關鍵詞: | MOSFET, 40nm CMOS process, BSIM bulk model, Subthreshold Swing, Mobility, Cryogenic |
| 相關次數: | 點閱:74 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這個科技環繞著我們生活的時代,為求元件運算速度快、低功耗等特性,我們除了朝向結構的改變以及尺寸縮減上精進與改善之外,低溫特性在現今市場中也佔有日趨重要的地位。因應未來量子比特的需求,需要在常溫以及極低溫元件之間建立傳遞的橋樑,所以低溫下的物理特性是我們首先必須去探討以及了解的。
這篇論文主要是藉由下線MOSFET元件得到的電性資料,並以參數萃取軟體Utmost套用BSIM bulk Verilog-A模型萃取出次臨界擺盪以及遷移率的參數,最後針對各個參數去探討300K、77K、4K下的參數關係,以了解低溫下的物理特性是如何影響各個參數。
除了可以理解萃取出的參數所對應到的物理特性,也可以應用在修改BSIM模型上,例如將新發現到的物理效應套用在現有模型中,並探討現有參數可能包含其他參數或者需要依靠新參數來解決現有模型遇到的問題,以作為未來設計模型的參考。
In this high-tech era, to achieve the characteristics of fast operation and low power consumption of devices and improve structural changes and size reduction, low-temperature characteristics also occupy an increasingly important position in today's market. In response to the needs of qubits, it is necessary to establish a bridge between room temperature and extremely low-temperature devices, so the physical properties at low temperature are the first things we must explore and understand.
This paper mainly uses the raw data obtained from the tape-out MOSFET devices and uses the parameter extraction software Utmost IV to apply the BSIM bulk Verilog-A model to extract the parameters of subthreshold swing and mobility. Finally, we can focus on the relationships of the parameters at 300K, 200K, 77K, and 4K. So that we will understand how physical properties at low temperatures affect each parameter.
In addition to understanding the physical properties corresponding to the extracted parameters, it can also be applied to modify the BSIM model, such as applying the newly discovered physical effects to the existing model and discussing whether the existing parameters may contain other parameters or rely on new parameters. That may solve the problems encountered by the existing model as a reference for future design models.
[1] Gordon E. Moore, “Cramming more components onto integrated circuits” Proceedings of the IEEE, Vol.86, pp. 82-85, 1998.
[2] Donald A Neamen, Semiconductor physics and devices: basic principles, 4th ed. New York, N.Y: McGraw-Hill, 2012, pp.161,466.
[3] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New York, NY, USA: Wiley, 1981, pp. 431–511.
[4] A. Kamgar, “Subthreshold behavior of silicon MOSFETs at 4.2 K,” Solid-State Electron., vol. 25, no. 7, pp. 537–539, Jul. 1982
[5] R. M. Incandela, L. Song, H. Homulle, E. Charbon, A. Vladimirescu, and F. Sebastiano, “Characterization and compact modeling of nanometer CMOS transistors at deep–cryogenic temperatures,” IEEE J. Electron Devices Soc., vol. 6, pp. 996–1006, Apr. 2018.
[6] E. Gutierrez-D, J. Deen, and C. Claeys, Low Temperature Electronics: Physics, Devices, Circuits, and Applications. San Diego, MA, USA: Academic, Oct. 2001, pp. 135–240.
[7] H. Homulle, L. Song, E. Charbon, and F. Sebastiano, “The cryogenic temperature behavior of bipolar, MOS, and DTMOS transistors in standard CMOS”, IEEE J. Electron Devices Soc., vol. 6, pp. 263–270, 2018. doi: 10.1109/JEDS.2018.2798281.
[8] H. Hanamura, M. Aoki, T. Masuhara, O. Minato, Y. Sakai, and T. Hayashida, “Operation of bulk CMOS devices at very low temperatures,” IEEE J. Solid-State Circuits, vol. JSSC-21, no. 3, pp. 484–490, Jun. 1986.
[9] R. M. Incandela, L. Song, H. A. R. Homulle, F. Sebastiano, E. Charbon, and A. Vladimirescu, “Nanometer CMOS characterization and compact modeling at deep-cryogenic temperatures,” in Proc. 47th Eur. Solid State Device Res. Conf., Leuven, Belgium, Sep. 2017, pp. 58–61.
[10] A. Beckers, F. Jazaeri and C. Enz, "Theoretical Limit of Low Temperature Subthreshold Swing in Field-Effect Transistors," in IEEE Electron Device Letters, vol. 41, no. 2, pp. 276-279, Feb. 2020, doi: 10.1109/LED.2019.2963379.
[11] H. Bohuslavskyi et al., "Cryogenic Subthreshold Swing Saturation in FD-SOI MOSFETs Described With Band Broadening," in IEEE Electron Device Letters, vol. 40, no. 5, pp. 784-787, May 2019, doi: 10.1109/LED.2019.2903111.
[12] A. Beckers, F. Jazaeri and C. Enz, "Cryogenic MOS Transistor Model," in IEEE Transactions on Electron Devices, vol. 65, no. 9, pp. 3617-3625, Sept. 2018, doi: 10.1109/TED.2018.2854701.
[13] S. Markov, Y. Kwok, J. Li, W. Zhou, Y. Zhou and G. Chen, "Fundamental Limit to Scaling Si Field-Effect Transistors Due to Source-to-Drain Direct Tunneling," in IEEE Transactions on Electron Devices, vol. 66, no. 3, pp. 1167-1173, March 2019, doi: 10.1109/TED.2019.2894967.
[14] H. Kawaura and T. Baba, “Direct tunneling from source to drain in nanometer-scale silicon transistors,” Jpn. J. Appl. Phys., vol. 42, no. 2A, pp. 351–357, Feb. 2003, doi: 10.1143/jjap.42.351.
[15] A. Beckers, F. Jazaeri and C. Enz, "Inflection Phenomenon in Cryogenic MOSFET Behavior," in IEEE Transactions on Electron Devices, vol. 67, no. 3, pp. 1357-1360, March 2020, doi: 10.1109/TED.2020.2965475.
[16] S. Takagi, A. Toriumi, M. Iwase and H. Tango, "On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration," in IEEE Transactions on Electron Devices, vol. 41, no. 12, pp. 2357-2362, Dec. 1994, doi: 10.1109/16.337449.
[17] Chain, Kenneth W. et al. “A MOSFET electron mobility model of wide temperature range (77 - 400 K) for IC simulation.” Semiconductor Science and Technology 12 (1997): 355-358.
[18] Liu, Gang. (2015). Silicon carbide: A unique platform for metal-oxide-semiconductor physics. Applied Physics Reviews. 2. 021307. 10.1063/1.4922748.
[19] Y. S. Chauhan et al., "BSIM6: Analog and RF Compact Model for Bulk MOSFET," in IEEE Transactions on Electron Devices, vol. 61, no. 2, pp. 234-244, Feb. 2014, doi: 10.1109/TED.2013.2283084.
[20] W. Chakraborty, K. Ni, S. Dutta, B. Grisafe, J. Smith and S. Datta, "Cryogenic Response of HKMG MOSFETs for Quantum Computing Systems," 2019 Device Research Conference (DRC), 2019, pp. 115-116, doi: 10.1109/DRC46940.2019.9046346.
[21] M. Cassé, K. Tachi, S. Thiele, and T. Ernst, “Spectroscopic charge pumping in Si nanowire transistors with a high-κ/metal gate,” Appl. Phys. Lett., vol. 96, no. 12, Mar. 2010, Art. no. 123506, doi: 10.1063/1.3368122.
[22] R. Saligram, W. Chakraborty, N. Cao, Y. Cao, S. Datta and A. Raychowdhury, "Power Performance Analysis of Digital Standard Cells for 28 nm Bulk CMOS at Cryogenic Temperature Using BSIM Models," in IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, vol. 7, no. 2, pp. 193-200, Dec. 2021, doi: 10.1109/JXCDC.2021.3131100.