簡易檢索 / 詳目顯示

研究生: 邱宇君
Chiu, Yu-Chun
論文名稱: 成長溫度對有機磁性半導體之影響
Temperature-dependent magnetic organic semiconductors
指導教授: 周維揚
Chou, Wei-Yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 60
中文關鍵詞: 有機磁性半導體薄膜成長溫度
外文關鍵詞: Magnetic organic semiconductor, deposition temperature
相關次數: 點閱:112下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討成長溫度的改變與鎳原子的摻雜對五環素薄膜的影響,利用分子束磊晶系統蒸鍍五環素,電子鎗系統同時摻雜鎳原子,並以熱輻射的方式加熱基板,提高成長溫度使分子獲得動能進而改變薄膜特性,期望得到較寬的磁滯空間,並探討五環素的2p軌域與鎳原子的3d軌域耦合,以五環素作為磁性傳遞橋樑,於室溫環境中觀察到有機磁性薄膜具有殘磁現象。
    此部分實驗鎳與五環素摻雜比例為,鎳原子數:五環素分子數=0.33:1。由XRD結果分析,在成長溫度為20 °C時,五環素薄膜與摻雜鎳的五環素薄膜皆為薄膜相;在成長溫度為50 °C時,五環素薄膜與摻雜鎳的五環素薄膜同時有薄膜相與塊材相存在,在晶面(001)繞射中,塊材相強度比上薄膜相強度,五環素薄膜的比值大於摻雜鎳的五環素薄膜的比值。AFM的結果顯示,當成長溫度為50 °C時,五環素分子因獲得熱能而能使得分子聚集在一起,則晶粒較大;摻雜鎳的五環素薄膜,五環素分子雖獲得熱能,但鎳原子會阻礙五環素分子往橫向擴散,因此晶粒較小。由MFM分析有機磁性薄膜,成長溫度50 °C時,摻雜鎳的五環素薄膜在室溫環境有殘磁的存在,且成長溫度50 °C的薄膜比成長溫度20 °C的薄膜,其相位變化更明顯。
    由拉曼光譜儀分析摻雜鎳對五環素薄膜的影響,摻雜鎳的五環素薄膜外加磁場後會造成五環素分子耦合的提高,五環素分子側邊C-H振動訊號產生紅位移現象。比較pentacene側邊的C-H振動與內部的苯環振動之拉曼訊號強度比值,發現強度比值下降可說明Ni 與Pentacene 之間的電子自旋耦合提高。

    Magnetic organic semiconductor thin films composed of pentacene molecules and Ni atoms were fabricated via molecular beam epitaxy and electron beam deposition under different deposition temperatures. When deposition temperature was increased, pentacene molecules and Ni atoms could obtain sufficient kinetic energy, facilitating Ni atoms to be at preferable positions among pentacene molecules. Through Raman spectroscopy analyses of Ni-doped pentacene films, we observed the existence of electronic coupling between the 2p orbital of pentacene molecules and 3d orbital of Ni atoms. Furthermore, the electronic coupling would be enhanced strongly after applied an external magnetic field to the Ni-doped pentacene film. The topographies of different pentacene films, which could be observed from atomic force microscopy (AFM), were dissimilar. Magnetic properties of Ni-doped pentacene films were examined via magnetic-field-dependent magnetization, M-H, at the room temperature. The models of magnetic transition, magnetic transmission bridge, were proposed to explain the remnant magnetization of the magnetic organic semiconductor thin film.

    Abstract...I 中文摘要...VI 致謝...VIII 目錄...IX 表目錄...XI 圖目錄...XII 第一章 緒論...1 1.1 前言...1 1.2 研究目的...4 第二章 基礎理論...6 2.1 五環素特性...6 2.2 磁性理論...8 2.2.1 磁性來源...8 2.2.2 磁性物質分類...9 2.2.3 磁滯曲線...13 第三章 儀器介紹與量測流程...16 3.1 實驗製程儀器...16 3.1.1 分子束磊晶系統 (Molecule Beam Epitaxy)...16 3.2 實驗量測儀器...18 3.2.1 原子力顯微鏡(Atomic force microscopy, AFM)...18 3.2.2 磁力顯微鏡(Magnetic force microscopy, MFM)...19 3.2.3 化學分析電子能譜儀(Electron spectroscopy for chemical analisis, ESCA)...20 3.2.4 X光繞射光譜儀(X ray diffraction, XRD)...21 3.2.5 超導量子干涉儀(Superconducting Quantum Interference Device, SQUID)...22 3.2.6 二維拉曼成像光譜儀(Mapping Raman Spectroscopy)...23 3.3 實驗流程...24 3.3.1 基板清洗流程...24 3.3.2 實驗樣品製程...25 第四章 實驗結果...26 4.1 化學分析電子能譜...26 4.2 X光繞射光譜分析...28 4.3 原子力顯微鏡分析...30 4.4 磁力顯微鏡...31 4.5 二維拉曼成像系統分析...32 4.7 SQUID...35 第五章...54 5.1 結論...54 5.2 未來工作...56 參考文獻...57

    1.M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices”, Phys. Rev. Lett., 61, 2472, 1988.
    2.S. Datta, B. Das, “Electronic analog of the electro‐optic modulator”, Appl. Phys. Lett., 56, 665, 1990.
    3.R.R. Thankalekshmi, Alok Rastogi, “Simulation of a spin field effect transistor based on magnetic impurity–doped ZnO”, J. Appl. Phys, 111, 07D104, 2012.
    4.Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, D. D. Awschalom, “Electrical spin injection in a ferromagnetic semiconductor heterostructure”, Nature, 402, 790, 1999.
    5.A. V. Khvalkovskiy, D. Apalkov, S Watts, R. Chepulskii, R. S. Beach, A Ong, X. Tang, A. D. Smith, W. H. Butler, P. B. Visscher, D. Lottis, E. Chen, V. Nikitin, M. Krounbi, “Erratum: Basic principles of STT-MRAM cell operation in memory arrays”, J. Phys. D: Appl. Phys., 46, 074001, 2013.
    6.吳德和, “磁阻式隨機存取記憶體技術的發展-現在與未來”, 物理雙月刊, 卷26, 2004。
    7.W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide”, Nature, 479, 84, 2011.
    8.S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, C. Monroe, “Demonstration of a small programmable quantum computer with atomic qubits”, Nature, 536, 63, 2016.
    9.H. Ohno, A. Shen, F. M. A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, “(Ga, Mn) As: A new diluted magnetic semiconductor based on GaAs”, Appl. Phys. Lett., 69, 363, 1996.
    10.H. Ohno, H. Munekata, T. Penney, S. von Molnár, L. L. Chang, “Magnetotransport properties of p-type (In, Mn) As diluted magnetic III-V semiconductor”, Phys. Rev. Lett., 68, 2664, 1992.
    11.J. K. Furdyna, “Diluted magnetic semiconductors”, J. Appl. Phys., 64, 160R29, 1988.
    12.胡裕民, “III-V稀磁性半導體薄膜之研究與發展”, 物理雙月刊, 卷26, 2004。
    13.L. B. Shi, J. J. Liu, Y. Fei, “Defect formation and magnetic properties of Co-doped GaN crystal and nanowire”, Physica B, 426, 45, 2013.
    14.R. P. Davies, C. R. Abernathy, S. J. Pearton, F. Ren, “Review of recent advances in transition and lanthanide metal–doped GaN and ZnO”, Chem. Eng. Commun., 195, 1030, 2009.
    15.S. M. Basha, S. Ramasubramanian, M. Rajagopalan, J. Kumar, T. W. Kang, N. G. Subramaniam, Y. Kwon “Investigations on cobalt doped GaN for spintronic applications”, J. Cryst. Growth, 218, 432, 2011.
    16.K. Srinivas, M. Vithal, B. Sreedhar, M. M. Raja and P. V. Reddy, “Structural, optical, and magnetic properties of nanocrystalline Co doped SnO2 based diluted magnetic semiconductors”, J. Phys. Chem. C, 113, 3543, 2009.
    17.M. Cazayous, G. Horowitz, P. Lang, R. P. S. M. Lobo, “Iodine insertion in pentacene thin films investigated by infrared and Raman spectroscopy”, Phys. Rev. B, 70, 081309, 2004.
    18.B. Bräuer, Y. Vaynzof, W. Zhao, A. Kahn, W. Li, D. R. T. Zahn, C. de Julián Fernández, C. Sangregorio, G. Salvan “Electronic and magnetic properties of Ni nanoparticles embedded in various organic semiconductor matrices”, J. Phys. Chem. B, 113, 4565, 2009.
    19.何宗曄, “具高介電係數介電層的有機薄膜電晶體與Ni摻雜有機磁性半導體之研究”, 國立成功大學博士論文, 2013。
    20.余泊學, “鎳摻雜在塊材相有機半導體中的電子自旋耦合之研究”, 國立成功大學碩士論文, 2013。
    21.吳宗璟, “有機磁性半導體薄膜之特性研究”, 國立成功大學碩士論文, 2014。
    22.C.C. Mattheus, G. A. de Wijs, R. A. de Groot, T. T. M. Palstra, “Modeling the polymorphism of pentacene”, J. Am. Chem, Soc., 125, 6523, 2003.
    23.C.C. Mattheus, A. B. Dros, J. Baas, A. Meetsma, J. L. de Boer, T. T. M. Palstra, “Polymorphism in pentacene”, Acta Crystallogr. Sect. C-Cryst. Struct. Commun., 57, 939, 2001.
    24.L.F. Drummy, D. C. Martin, “Thickness-driven orthorhombic to triclinic phase transformation in pentacene thin films”, Adv. Mater., 17,903, 2005.
    25.李學養,張煦, “磁性物理學”, 聯經出版事業公司印行,台北市,p.8,1982。
    26.W.D. Callister, D. G. Rethwisch, “Materials science and engineering”, John Wiley & Sons, Inc, Hoboken, p.800, 2011.
    27.G. Bertotti, I. D. Mayergoyz, “The science of hysteresis”, Academic Press, UK, p.3, 2006.
    28.G. Bertotti, “Hysteresis in Magnetism”, Academic Press, San Diego, p.3, 1998.
    29.J. R. Ferraro, K. Nakamoto, C. W. Brown, “Introductory Raman spectroscopy”, Academic Press, Boston, p.15, 2002.
    30.H. L. Cheng, J. W. Lin., “Controlling polymorphic transformations of pentacene crystal through solvent treatments: An experimental and theoretical Study”, Cryst. Growth Des., 10, 4501, 2010.
    31.L. Colangeli, V. Mennella., G. A. Baratta, E. Bussoletti, G. Strazzulla, “Raman and infrared spectra of polycyclicaromatic hydrocarbon molecules of possible astrophysical interest”, Astrophys. J, 396. 369, 1992.
    32.Y. Hosoi, D. M. Deyra, K. Nakajima, Y. Furukawa., “Micro-Raman spectroscopy on pentacene thin-film transistors”, Mol. Cryst. Liquid Cryst., 491, 317, 2008.

    下載圖示 校內:2022-01-01公開
    校外:2022-01-01公開
    QR CODE