| 研究生: |
王振安 Wang, Chen-An |
|---|---|
| 論文名稱: |
奈米碳球衍生物嵌入液晶高分子有序相之探討 Study on the intercalation of fullerene derivate into ordered phases liquid crystalline polymer |
| 指導教授: |
阮至正
Ruan, Jr-Jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | PBTTT 、嵌入 、高分子–富勒烯體接面太陽能電池 |
| 外文關鍵詞: | PBTTT, intercalation, composite liquid crystals |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在高分子–富勒烯體接面太陽能電池(Polymer-fullerene bulk heterojunction solar cells)中,高分子與富勒烯之衍生物之相分佈結構影響了其太陽能電池之表現。本研究藉由討論導電高分子PBTTT-C14(PBTTT (Poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene])) 與富勒烯衍生物PCBM ([6,6]-Phenyl C71 butyric acid methyl ester, PC71BM)的嵌入關係,進而理解高分子–富勒烯相分佈結構。
溫度主導了PCBM之結晶與嵌入的競爭關係。在相對低溫持溫時,PCBM傾向嵌入於PBTTT-C14之有序相中。然而在相對高溫持溫時,PCBM則具備了自主結晶傾向。
此外,本研究發現,若使用特定溶劑部分破壞PBTTT-C14之有序結構,只有在結構修復之後,PCBM才會重新嵌入PBTTT-C14之有序相中。不論在相對高溫或者是低溫,PCBM與PBTTT-C14之側鏈都不存在自組裝行為。
最後,在建立PBTTT-C14有序相的過程中,本研究發現到前驅液晶相的影響可以促使PBTTT-C14有序相連續網狀分布。
The phase separation relationship between polymer and fullerene have been treated as a major influence that impact the operation of bulk heterojunction solar cells. In this research, we investigate the intercalation behavior between PBTTT-C14(PBTTT (Poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene])) and PCBM ([6,6]-Phenyl C71 butyric acid methyl ester, PC71BM) to unveil the phase separation relationship in this system.
Temperature dominate the competition between the intercalation of PCBM into PBTTT-C14 order phase and self-crystallization of PCBM. At lower temperature, PCBM tends to intercalate into the cavity among PBTTT-C14 side chain. However, at higher temperature PCBM tends to crystallization.
In the other hand, PCBM are not able to intercalate into PBTTT-C14 domain once the side chain regularity is reduced by partially soluble solvent on PBTTT-C14. No self-assembling relationship are found between PBTTT-C14 and PCBM either at high or low temperature.
Furthermore, a continuous and well-orientated PBTTT-C14 order phase domain can be developed through the liquid crystalline preordering while cooling.
1. Schöllhorn, R. Materials and Models: Faces of Intercalation Chemistry. in 1–81 (1994). doi:10.1007/978-94-011-0890-4_1
2. Whittingham, M. S. (Michael S. &Jacobson, A. J. Intercalation chemistry. (Academic Press, 1982).
3. Nakano, K. et al. Organic Intercalation Material: Reversible Change in Interlayer Distances by Guest Release and Insertion in Sandwich-Type Inclusion Crystals of Cholic Acid. Chem. - A Eur. J. 11, 1725–1733 (2005).
4. Christophe Daniel, *, Nunzia Galdi, Tommaso Montefusco, and &Guerra, G. Syndiotactic Polystyrene Clathrates with Polar Guest Molecules. (2007). doi:10.1021/CM070476I
5. Daniel, C., Sannino, D. &Guerra, G. Syndiotactic Polystyrene Aerogels: Adsorption in Amorphous Pores and Absorption in Crystalline Nanocavities. Chem. Mater. 20, 577–582 (2008).
6. Paola Rizzo, Christophe Daniel, Anna De Girolamo Del Mauro, and &Guerra*, G. New Host Polymeric Framework and Related Polar Guest Cocrystals. (2007). doi:10.1021/CM071099C
7. Petraccone, V., Ruiz de Ballesteros, O., Tarallo, O., Rizzo, P. &Guerra, G. Nanoporous Polymer Crystals with Cavities and Channels. Chem. Mater. 20, 3663–3668 (2008).
8. Gaikwad, A. M. et al. Identifying orthogonal solvents for solution processed organic transistors. Org. Electron. 30, 18–29 (2016).
9. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. &Heeger, A. J. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor- EREPORTS Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Source Sci. New Ser. 270, 1789–1791 (1995).
10. Dennler, G., Scharber, M. C. &Brabec, C. J. Polymer-Fullerene Bulk-Heterojunction Solar Cells. Adv. Mater. 21, 1323–1338 (2009).
11. Bagher, A. M. Introduction to Organic Solar Cells. Sustain. Energy 2, 85–90 (2014).
12. Deibel, C. &Dyakonov, V. Polymer–fullerene bulk heterojunction solar cells. Reports Prog. Phys. 73, 096401 (2010).
13. DeLongchamp, D. M. et al. Molecular Basis of Mesophase Ordering in a Thiophene-Based Copolymer. Macromolecules 41, 5709–5715 (2008).
14. Kline, R. J. et al. Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules 38, 3312–3319 (2005).
15. Sarker, B. K., Liu, J., Zhai, L. &Khondaker, S. I. Fabrication of Organic Field Effect Transistor by Directly Grown Poly(3 Hexylthiophene) Crystalline Nanowires on Carbon Nanotube Aligned Array Electrode. ACS Appl. Mater. Interfaces 3, 1180–1185 (2011).
16. Salammal, S. T. et al. Impact of Thermal Annealing on the Semicrystalline Nanomorphology of Spin-Coated Thin Films of Regioregular Poly(3-alkylthiophene)s as Observed by High-Resolution Transmission Electron Microscopy and Grazing Incidence X-ray Diffraction. Macromolecules 45, 5575–5585 (2012).
17. Lee, M. J. et al. Anisotropy of Charge Transport in a Uniaxially Aligned and Chain-Extended, High-Mobility, Conjugated Polymer Semiconductor. Adv. Funct. Mater. 21, 932–940 (2011).
18. Rivnay, J. et al. Structural origin of gap states in semicrystalline polymers and the implications for charge transport. Phys. Rev. B 83, 121306 (2011).
19. McCulloch, I. et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328–333 (2006).
20. Kline, R. J. et al. Critical role of side-chain attachment density on the order and device performance of polythiophenes. Macromolecules 40, 7960–7965 (2007).
21. Alberga, D. et al. Morphological and charge transport properties of amorphous and crystalline P3HT and PBTTT: insights from theory. Phys. Chem. Chem. Phys. 17, 18742–18750 (2015).
22. Yao, Y., Dong, H. &Hu, W. Ordering of conjugated polymer molecules: recent advances and perspectives. Polym. Chem. 4, 5197 (2013).
23. Venkateshvaran, D. et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014).
24. Cates, N. C. et al. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation. Nano Lett. 9, 4153–4157 (2009).
25. Wang, C., Dong, H., Hu, W., Liu, Y. &Zhu, D. Semiconducting π-Conjugated Systems in Field-Effect Transistors: A Material Odyssey of Organic Electronics. Chem. Rev. 112, 2208–2267 (2012).
26. Miller, N. C. et al. Molecular Packing and Solar Cell Performance in Blends of Polymers with a Bisadduct Fullerene. Nano Lett. 12, 1566–1570 (2012).
27. Qadir, K. W., Ahmad, Z. &Sulaiman, K. Thermal Annealing Effect on the Optical, Electrical and Morphological Properties of the PBTTT-C12:PC71BM Blend Films. J. Sol. Energy Eng. 137, 034503 (2015).
28. Mayer, A. C. et al. Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells. Adv. Funct. Mater. 19, 1173–1179 (2009).
29. Miller, N. C. et al. Factors Governing Intercalation of Fullerenes and Other Small Molecules Between the Side Chains of Semiconducting Polymers Used in Solar Cells. Adv. Energy Mater. 2, 1208–1217 (2012).
30. Miller, N. C. et al. Use of X-ray diffraction, molecular simulations, and spectroscopy to determine the molecular packing in a polymer-fullerene bimolecular crystal. Adv. Mater. 24, 6071–6079 (2012).
31. Miller, N. C. Molecular Packing in Organic Solar Cells. (2012).
32. Botiz, I. &Stingelin, N. Influence of Molecular Conformations and Microstructure on the Optoelectronic Properties of Conjugated Polymers. Materials (Basel). 7, 2273–2300 (2014).
校內:立即公開