| 研究生: |
許耀文 Hsu, Yao-Wen |
|---|---|
| 論文名稱: |
土地使用對路邊停車場使用績效之影響-以臺南市西門路為例 The Impact of Land Use on The Performance of On-Street Parking Lots——An Empirical Example of Ximen Road, Tainan City . |
| 指導教授: |
李子璋
Lee, Tzu-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 路邊停車格 、停車使用時數 、土地使用 、二項次分配模型 、馬可夫鍊蒙地卡羅法 |
| 外文關鍵詞: | On-street parking, Parking hour, Land use, Binomial distribution model, Markov Chain Monte Carlo |
| 相關次數: | 點閱:2 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺南市建城於1624年,為我國都市發展最早建立的城市,多數行政區仍保留歷史街廓與道路紋理,形成獨特的城市風貌。近年人口與經濟持續成長,私有運具使用率亦居高不下,導致停車供需失衡成為城市管理重要課題。為改善此問題,臺南市政府自2018年起推動「臺南好停NO.萬」計畫,積極擴大停車供給,其中以可及性高、成本低的路邊停車格最為廣泛使用。然而,路邊停車格的管理除了現行法規與收費制度亟需檢討外,亦需針對土地使用進行科學化調整,這是國內各級政府需重視的重要課題。本研究利用臺南市政府提供的2023年全年度停車收費資料,應用二項次分配模型結合馬可夫鍊蒙地卡羅(MCMC)模式進行參數模擬,探討路邊停車格周邊土地使用特性與路邊停車時數的關聯性。研究結果顯示,特殊地標、公共設施以及學校、醫療設施等土地使用,對路邊停車格使用時數呈現正向顯著的影響,未來宜針對該類型土地使用周邊停車格存廢審慎評估,同時在設施開發過程中應審慎考量停車需求外溢問題。而商業土地影響使用路邊停車使用時數亦有正向影響,尤其是小型商業單元,可針對其週邊停車費率進行更嚴格的管制策略;住宅區則減少鄰近路邊停車格使用時數,未來可評估釋放路邊停車空間做其他有效運用。路外停車場在有效吸引路邊停車使用行為的轉移,致使周邊路邊停車格之時數有顯著降低。值得注意的是,公共運輸服務對路邊停車格使用時數的影響,與過去研究結果存在差異,顯示臺南市在促進公共運輸使用率的政策上,仍有成長空間。本研究將二項次分配與MCMC法應用於路邊停車使用時數與土地使用間的互動關係,在模型收斂性與參數估計上表現良好,模型可作為管理者量化各類土地使用對路邊停車時數影響,為停車格劃設、差別費率設定與政策制定提供依據。然而,鑑於路邊停車使用行為受到多種內外生變數影響,未來可進一步優化模型參數設計,結合不同機率密度函數與變數調整,以提升整體可靠度與準確性。
Tainan City, established in 1624, is one of Taiwan’s earliest urban developments, with most districts retaining historical street patterns and forming a unique urban landscape. Rapid population and economic growth, coupled with high private vehicle usage, has created a persistent imbalance between parking supply and demand. To address this, the city government has implemented policies to expand parking supply, with on-street spaces being the most accessible and widely used.
This study uses 2023 full-year parking data and applies a binomial sub-distribution model combined with Markov Chain Monte Carlo (MCMC) simulations to examine the relationship between land use and on-street parking performance. Results show that landmarks, public facilities, schools, and medical institutions positively influence parking usage, while residential areas reduce performance. Small-scale commercial units also increase usage, suggesting stricter local fee control, whereas off-street parking effectively diverts demand, reducing nearby on-street usage. Public transportation effects differ from previous studies, indicating potential for policy improvement.
The model demonstrates good convergence and parameter estimation, providing a quantitative tool for assessing land-use impacts on on-street parking and informing space allocation, pricing strategies, and policy decisions. Future studies may further refine model parameters and incorporate additional factors to improve reliability and accuracy.
1.Al-Masaeid, H., Al-Omari, B., & Al-Harahsheh, A. (1999). Vehicle parking demand for different land uses in Jordan. ITE Journal.
2.Al-Sahili, K., & Hamadneh, J. (2016). Establishing parking generation rates/models of selected land uses for Palestinian cities. Transportation Research Part A: Policy and Practice, 91, 213-222. https://doi.org/10.1016/j.tra.2016.06.027
3.Caicedo, F., Lopez-Ospina, H., & Pablo-Malagrida, R. (2016). Environmental repercussions of parking demand management strategies using a constrained logit model. Transportation Research Part D: Transport and Environment, 48, 125-140. https://doi.org/10.1016/j.trd.2016.08.014
4.Cheng, W., & Washington, S. P. (2005). Experimental evaluation of hotspot identification methods. Accident Analysis & Prevention, 37(5), 870-881. https://doi.org/10.1016/j.aap.2005.01.006
5.Dave, S. M., Joshi, G. J., Ravinder, K., & Gore, N. (2019). Data monitoring for the assessment of on-street parking demand in CBD areas of developing countries. Transportation Research Part A: Policy and Practice, 126, 152-171. https://doi.org/10.1016/j.tra.2019.05.009
6.Deo Chimba, M. O. (2012). Optimization of Short-Term On-Street Park-Pay License Plate Surveying. JOURNAL OF INFRASTRUCTURE SYSTEMS. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000087.
7.Jordon, D., Hampshire, R., & Fabusuyi, T. (2021). Estimating parking occupancy using smart meter transaction data. arXiv preprint. https://arxiv.org/pdf/2106.02270.pdf
8.Kim, K. M., Hong, S. P., & Park, M. J. (2016). Bayesian inference of commuters’ route choice behavior using MCMC simulation. Proceedings of the Eastern Asia Society for Transportation Studies (EASTS). https://www.easts.info/on-line/proceedings/vol11/
9.Kobus, M. B. W., Gutiérrez-i-Puigarnau, E., Rietveld, P., & Van Ommeren, J. N. (2013). The on-street parking premium and car drivers' choice between street and garage parking. Regional Science and Urban Economics, 43(2), 395-403. https://doi.org/10.1016/j.regsciurbeco.2012.10.001
10.Litman, T. (2022). Evaluating Transportation Land Use Impacts Considering the Impacts, Benefits and Costs of Different Land Use Development Patterns. World Transport Policy & Practice, 1, 9-16.
11.Liu, B., Zhang, P., Wu, S., Zou, Y., Li, L., & Tang, S. (2023). Analyzing Parking Demand Characteristics Using a Bayesian Model Averaging. Applied Sciences, 13(24). https://doi.org/10.3390/app132413245
12.Mantouka, E. G., Fafoutellis, P., & Vlahogianni, E. I. (2021). Deep survival analysis of searching for on-street parking in urban areas. Transportation Research Part C: Emerging Technologies, 128. https://doi.org/10.1016/j.trc.2021.103173
13.Marsden, G. (2006). The evidence base for parking policies—a review. Transport Policy, 13(6), 447-457. https://doi.org/10.1016/j.tranpol.2006.05.009
14.McAndrews, C. (2020). Transportation and land use as social determinants of health: the case of arterial roads. In Transportation, Land Use, and Environmental Planning (pp.35-53). https://doi.org/10.1016/b978-0-12-815167-9.00003-7
15.McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. Academic Press.
16.Mingardo, G., Vermeulen, S., & Bornioli, A. (2022). Parking pricing strategies and behaviour: Evidence from the Netherlands. Transportation Research Part A: Policy andPractice, 157, 185-197. https://doi.org/10.1016/j.tra.2022.01.005
17.Mo, B., Kong, H., Wang, H., Wang, X., & Li, R. (2021). Impact of pricing policy change on on-street parking demand and user satisfaction: A case study in Nanning, China. Transportation Research Part A: Policy and Practice, 148, 445-469. https://doi.org/10.1016/j.tra.2021.04.013
18.Nezhadettehad, A., Zaslavsky, A., Rakib, A., & Loke, S. W. (2025). Uncertainty-Aware Parking Prediction Using Bayesian Neural Networks. Sensors (Basel), 25(11). https://doi.org/10.3390/s25113463
19.Nurul Habib, K. M., Morency, C., & Trépanier, M. (2012). Integrating parking behaviour in activity-based travel demand modelling: Investigation of the relationship between parking type choice and activity scheduling process. Transportation Research Part A: Policy and Practice, 46(1), 154-166. https://doi.org/10.1016/j.tra.2011.09.014
20.Parmar, J., Das, P., & Dave, S. M. (2021). A machine learning approach for modelling parking duration in urban land-use. Physica A: Statistical Mechanics and its Applications, 572. https://doi.org/10.1016/j.physa.2021.125873
21.Peng, T., Chen, J., Liu, K., Qiu, Z., Fu, Z., & Huang, Y. (2023). Examining the relationship between built environment and urban parking demand from the perspective of travelers. Journal of Cleaner Production, 385. https://doi.org/10.1016/j.jclepro.2022.135766
22.Shen, T., Hong, Y., Thompson, M. M., Liu, J., Huo, X., & Wu, L. (2020). How does parking availability interplay with the land use and affect traffic congestion in urban areas? The case study of Xi’an, China. Sustainable Cities and Society, 57. https://doi.org/10.1016/j.scs.2020.102126
23.Soto, J. J., Márquez, L., & Macea, L. F. (2018). Accounting for attitudes on parking choice: An integrated choice and latent variable approach. Transportation Research Part A: Policy and Practice, 111, 65-77. https://doi.org/10.1016/j.tra.2018.03.003
24.Train, K. E. (2003). Discrete Choice Methods with Simulation. Cambridge University Press. https://doi.org/10.1017/CBO9780511753930
25.Weinberger, R. (2020). Parking: not as bad as you think, worse than you realize. In Transportation, Land Use, and Environmental Planning (pp. 189-205). https://doi.org/10.1016/b978-0-12-815167-9.00010-4
26.葉峻宏, 游. 林. (2016). 水平形式大型購物中心業種多樣性區位配置策略之空間型購分析. 住宅學報, 25, 81-110.
27.方霖(2000)。台北市公有路外停車場系統績效評估之研究。國立交通大學運輸工程與管理學系碩士論文。
28.游依芸(2019)。不同土地使用下旅運需求型態之探索分析。國立交通大學運輸與物流管理學系碩士論文。
29.臺南市政府(2012)。臺南市公有停車場收費及管理自治條例。取自https://law01.tainan.gov.tw/glrsnewsout/LawContent.aspx?id=GL000186