簡易檢索 / 詳目顯示

研究生: 許耀文
Hsu, Yao-Wen
論文名稱: 土地使用對路邊停車場使用績效之影響-以臺南市西門路為例
The Impact of Land Use on The Performance of On-Street Parking Lots——An Empirical Example of Ximen Road, Tainan City .
指導教授: 李子璋
Lee, Tzu-Chang
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 都市計劃學系
Department of Urban Planning
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 92
中文關鍵詞: 路邊停車格停車使用時數土地使用二項次分配模型馬可夫鍊蒙地卡羅法
外文關鍵詞: On-street parking, Parking hour, Land use, Binomial distribution model, Markov Chain Monte Carlo
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺南市建城於1624年,為我國都市發展最早建立的城市,多數行政區仍保留歷史街廓與道路紋理,形成獨特的城市風貌。近年人口與經濟持續成長,私有運具使用率亦居高不下,導致停車供需失衡成為城市管理重要課題。為改善此問題,臺南市政府自2018年起推動「臺南好停NO.萬」計畫,積極擴大停車供給,其中以可及性高、成本低的路邊停車格最為廣泛使用。然而,路邊停車格的管理除了現行法規與收費制度亟需檢討外,亦需針對土地使用進行科學化調整,這是國內各級政府需重視的重要課題。本研究利用臺南市政府提供的2023年全年度停車收費資料,應用二項次分配模型結合馬可夫鍊蒙地卡羅(MCMC)模式進行參數模擬,探討路邊停車格周邊土地使用特性與路邊停車時數的關聯性。研究結果顯示,特殊地標、公共設施以及學校、醫療設施等土地使用,對路邊停車格使用時數呈現正向顯著的影響,未來宜針對該類型土地使用周邊停車格存廢審慎評估,同時在設施開發過程中應審慎考量停車需求外溢問題。而商業土地影響使用路邊停車使用時數亦有正向影響,尤其是小型商業單元,可針對其週邊停車費率進行更嚴格的管制策略;住宅區則減少鄰近路邊停車格使用時數,未來可評估釋放路邊停車空間做其他有效運用。路外停車場在有效吸引路邊停車使用行為的轉移,致使周邊路邊停車格之時數有顯著降低。值得注意的是,公共運輸服務對路邊停車格使用時數的影響,與過去研究結果存在差異,顯示臺南市在促進公共運輸使用率的政策上,仍有成長空間。本研究將二項次分配與MCMC法應用於路邊停車使用時數與土地使用間的互動關係,在模型收斂性與參數估計上表現良好,模型可作為管理者量化各類土地使用對路邊停車時數影響,為停車格劃設、差別費率設定與政策制定提供依據。然而,鑑於路邊停車使用行為受到多種內外生變數影響,未來可進一步優化模型參數設計,結合不同機率密度函數與變數調整,以提升整體可靠度與準確性。

    Tainan City, established in 1624, is one of Taiwan’s earliest urban developments, with most districts retaining historical street patterns and forming a unique urban landscape. Rapid population and economic growth, coupled with high private vehicle usage, has created a persistent imbalance between parking supply and demand. To address this, the city government has implemented policies to expand parking supply, with on-street spaces being the most accessible and widely used.
    This study uses 2023 full-year parking data and applies a binomial sub-distribution model combined with Markov Chain Monte Carlo (MCMC) simulations to examine the relationship between land use and on-street parking performance. Results show that landmarks, public facilities, schools, and medical institutions positively influence parking usage, while residential areas reduce performance. Small-scale commercial units also increase usage, suggesting stricter local fee control, whereas off-street parking effectively diverts demand, reducing nearby on-street usage. Public transportation effects differ from previous studies, indicating potential for policy improvement.
    The model demonstrates good convergence and parameter estimation, providing a quantitative tool for assessing land-use impacts on on-street parking and informing space allocation, pricing strategies, and policy decisions. Future studies may further refine model parameters and incorporate additional factors to improve reliability and accuracy.

    摘要I 第一章緒論1 1.1研究背景與動機1 1.2研究目的4 1.3研究範圍與限制5 1.4研究流程10 第二章文獻回顧11 2.1臺南市路邊停車場設置廢止原則11 2.2臺南市路邊停車格收費管理制度13 2.3土地使用與停車供需13 2.4路邊停車格與旅次行為16 2.5馬可夫練-蒙地卡羅法19 2.6小結20 第三章研究方法21 3.1資料收集與分析21 3.2資料處理原則25 3.3變數設定25 3.4二項次分配模型設定27 3.5交叉驗證模型設定30 3.6小結32 第四章研究成果33 4.1敘述性統計分析33 4.2馬可夫鍊參數校估分析36 4.2.1一般模式校估成果36 4.2.2商業分類模式校估成果44 4.2.3商業權重模式校估成果52 4.2.4模式綜合分析58 4.3交叉驗證分析59 4.3.1未抽選資料交叉驗證59 4.3.2民生路資料交叉驗證62 4.3.3對數概似分析66 4.4停車使用率之土地使用影響因子模型比較68 4.5小結71 第五章結論73 5.1研究結論與建議73 5.1.1土地使用與路邊停車使用時數之影響73 5.1.2二項次分配模型與MCMC法75 5.2停車管理政策與後續研究建議76 參考文獻79

    1.Al-Masaeid, H., Al-Omari, B., & Al-Harahsheh, A. (1999). Vehicle parking demand for different land uses in Jordan. ITE Journal.
    2.Al-Sahili, K., & Hamadneh, J. (2016). Establishing parking generation rates/models of selected land uses for Palestinian cities. Transportation Research Part A: Policy and Practice, 91, 213-222. https://doi.org/10.1016/j.tra.2016.06.027
    3.Caicedo, F., Lopez-Ospina, H., & Pablo-Malagrida, R. (2016). Environmental repercussions of parking demand management strategies using a constrained logit model. Transportation Research Part D: Transport and Environment, 48, 125-140. https://doi.org/10.1016/j.trd.2016.08.014
    4.Cheng, W., & Washington, S. P. (2005). Experimental evaluation of hotspot identification methods. Accident Analysis & Prevention, 37(5), 870-881. https://doi.org/10.1016/j.aap.2005.01.006
    5.Dave, S. M., Joshi, G. J., Ravinder, K., & Gore, N. (2019). Data monitoring for the assessment of on-street parking demand in CBD areas of developing countries. Transportation Research Part A: Policy and Practice, 126, 152-171. https://doi.org/10.1016/j.tra.2019.05.009
    6.Deo Chimba, M. O. (2012). Optimization of Short-Term On-Street Park-Pay License Plate Surveying. JOURNAL OF INFRASTRUCTURE SYSTEMS. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000087.
    7.Jordon, D., Hampshire, R., & Fabusuyi, T. (2021). Estimating parking occupancy using smart meter transaction data. arXiv preprint. https://arxiv.org/pdf/2106.02270.pdf
    8.Kim, K. M., Hong, S. P., & Park, M. J. (2016). Bayesian inference of commuters’ route choice behavior using MCMC simulation. Proceedings of the Eastern Asia Society for Transportation Studies (EASTS). https://www.easts.info/on-line/proceedings/vol11/
    9.Kobus, M. B. W., Gutiérrez-i-Puigarnau, E., Rietveld, P., & Van Ommeren, J. N. (2013). The on-street parking premium and car drivers' choice between street and garage parking. Regional Science and Urban Economics, 43(2), 395-403. https://doi.org/10.1016/j.regsciurbeco.2012.10.001
    10.Litman, T. (2022). Evaluating Transportation Land Use Impacts Considering the Impacts, Benefits and Costs of Different Land Use Development Patterns. World Transport Policy & Practice, 1, 9-16.
    11.Liu, B., Zhang, P., Wu, S., Zou, Y., Li, L., & Tang, S. (2023). Analyzing Parking Demand Characteristics Using a Bayesian Model Averaging. Applied Sciences, 13(24). https://doi.org/10.3390/app132413245
    12.Mantouka, E. G., Fafoutellis, P., & Vlahogianni, E. I. (2021). Deep survival analysis of searching for on-street parking in urban areas. Transportation Research Part C: Emerging Technologies, 128. https://doi.org/10.1016/j.trc.2021.103173
    13.Marsden, G. (2006). The evidence base for parking policies—a review. Transport Policy, 13(6), 447-457. https://doi.org/10.1016/j.tranpol.2006.05.009
    14.McAndrews, C. (2020). Transportation and land use as social determinants of health: the case of arterial roads. In Transportation, Land Use, and Environmental Planning (pp.35-53). https://doi.org/10.1016/b978-0-12-815167-9.00003-7
    15.McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. Academic Press.
    16.Mingardo, G., Vermeulen, S., & Bornioli, A. (2022). Parking pricing strategies and behaviour: Evidence from the Netherlands. Transportation Research Part A: Policy andPractice, 157, 185-197. https://doi.org/10.1016/j.tra.2022.01.005
    17.Mo, B., Kong, H., Wang, H., Wang, X., & Li, R. (2021). Impact of pricing policy change on on-street parking demand and user satisfaction: A case study in Nanning, China. Transportation Research Part A: Policy and Practice, 148, 445-469. https://doi.org/10.1016/j.tra.2021.04.013
    18.Nezhadettehad, A., Zaslavsky, A., Rakib, A., & Loke, S. W. (2025). Uncertainty-Aware Parking Prediction Using Bayesian Neural Networks. Sensors (Basel), 25(11). https://doi.org/10.3390/s25113463
    19.Nurul Habib, K. M., Morency, C., & Trépanier, M. (2012). Integrating parking behaviour in activity-based travel demand modelling: Investigation of the relationship between parking type choice and activity scheduling process. Transportation Research Part A: Policy and Practice, 46(1), 154-166. https://doi.org/10.1016/j.tra.2011.09.014
    20.Parmar, J., Das, P., & Dave, S. M. (2021). A machine learning approach for modelling parking duration in urban land-use. Physica A: Statistical Mechanics and its Applications, 572. https://doi.org/10.1016/j.physa.2021.125873
    21.Peng, T., Chen, J., Liu, K., Qiu, Z., Fu, Z., & Huang, Y. (2023). Examining the relationship between built environment and urban parking demand from the perspective of travelers. Journal of Cleaner Production, 385. https://doi.org/10.1016/j.jclepro.2022.135766
    22.Shen, T., Hong, Y., Thompson, M. M., Liu, J., Huo, X., & Wu, L. (2020). How does parking availability interplay with the land use and affect traffic congestion in urban areas? The case study of Xi’an, China. Sustainable Cities and Society, 57. https://doi.org/10.1016/j.scs.2020.102126
    23.Soto, J. J., Márquez, L., & Macea, L. F. (2018). Accounting for attitudes on parking choice: An integrated choice and latent variable approach. Transportation Research Part A: Policy and Practice, 111, 65-77. https://doi.org/10.1016/j.tra.2018.03.003
    24.Train, K. E. (2003). Discrete Choice Methods with Simulation. Cambridge University Press. https://doi.org/10.1017/CBO9780511753930
    25.Weinberger, R. (2020). Parking: not as bad as you think, worse than you realize. In Transportation, Land Use, and Environmental Planning (pp. 189-205). https://doi.org/10.1016/b978-0-12-815167-9.00010-4
    26.葉峻宏, 游. 林. (2016). 水平形式大型購物中心業種多樣性區位配置策略之空間型購分析. 住宅學報, 25, 81-110.
    27.方霖(2000)。台北市公有路外停車場系統績效評估之研究。國立交通大學運輸工程與管理學系碩士論文。
    28.游依芸(2019)。不同土地使用下旅運需求型態之探索分析。國立交通大學運輸與物流管理學系碩士論文。
    29.臺南市政府(2012)。臺南市公有停車場收費及管理自治條例。取自https://law01.tainan.gov.tw/glrsnewsout/LawContent.aspx?id=GL000186

    QR CODE