簡易檢索 / 詳目顯示

研究生: 連律豪
Lien, Lu-Hao
論文名稱: 以水熱法成長氧化鎢奈米柱感測膜之一氧化氮氣體感測器特性研究
Investigated performance of NO gas sensors using WO3 nanorod sensing membranes grown by hydrothermal synthesis
指導教授: 李欣縈
Lee, Hsin-Ying
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 82
中文關鍵詞: 黑金異質接面結構水熱法一氧化氮氣體感測器氧化鎢奈米柱
外文關鍵詞: Gold-black, Heterojunction, Hydrothermal synthesis method, NO gas sensor, WO3 nanorods
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Abstract III 致謝 XI 目錄 XIII 表目錄 XVII 圖目錄 XVIII 第一章 序論 1 1.1 前言 1 1.2 一氧化氮氣體感測器介紹 1 1.3 研究動機 2 第二章 基本原理介紹與文獻回顧 5 2.1 氣體感測器簡介 5 2.1.1 氣體感測器種類介紹 5 2.1.2 半導體式氣體感測器原理及應用 7 2.1.3 氣體感測器之響應與回復 8 2.2 氧化鎢特性介紹及製備 9 2.2.1 氧化鎢特性及應用 9 2.2.2 氧化鎢晶種層之製備 10 2.2.3 水熱法合成氧化鎢奈米柱 11 2.2.4 氧化鎢奈米柱形貌對於氣體感測器之影響 12 2.2.5 熱處理奈米柱之特性 13 2.2.6 同質接面與異質接面對於氣體感測器之影響 13 2.3 黑金特性介紹及應用 14 第三章 實驗步驟與元件製作 17 3.1 實驗藥品 17 3.2 製程設備 17 3.2.1 磁控式射頻濺鍍系統 17 3.2.2 電子束蒸鍍系統 18 3.2.3 高溫爐管 19 3.2.4 低溫氣相冷凝系統 19 3.3 元件製作步驟 19 3.3.1 基板清洗 19 3.3.2 晶種層製備 20 3.3.3 水熱法合成氧化鎢奈米柱結構 21 3.3.4 高溫熱處理 21 3.3.5 元件金屬電極製備 22 3.3.6 黑金異質接面製作 22 3.4 特性分析與量測機台 22 3.4.1 X光繞射儀 22 3.4.2 X光光電子能譜儀 23 3.4.3 掃描式電子顯微鏡 24 3.4.4 穿透式電子顯微鏡 24 3.4.5 半導體元件氣體感測特性分析 25 第四章 研究成果與討論 32 4.1 氧化鎢晶種層分析 32 4.2 不同水熱法溫度合成氧化鎢奈米柱之形貌分析 33 4.3 不同草酸添加量對於氧化鎢奈米柱形貌之影響 34 4.4 不同鎢酸鈉濃度合成氧化鎢奈米柱之形貌與特性分析 35 4.4.1 鎢酸鈉濃度對於氧化鎢奈米柱形貌之影響 35 4.4.2 氣體感測器響應特性分析 36 4.5 不同前驅物酸鹼值合成氧化鎢奈米柱之形貌與特性分析 37 4.5.1 前驅物酸鹼值對於氧化鎢奈米柱形貌之影響 37 4.5.2 氣體感測器響應特性分析 38 4.6 不同氯化鈉添加量合成氧化鎢奈米柱之形貌與特性分析 38 4.6.1 氯化鈉添加對於氧化鎢奈米柱形貌之影響 39 4.6.2 氣體感測器響應特性分析 39 4.7 不同水熱法時間成長氧化鎢奈米柱之形貌與特性分析 40 4.7.1 水熱法成長時間對於氧化鎢奈米柱形貌之影響 41 4.7.2 氣體感測器響應特性分析 41 4.8 晶種層厚度對於氧化鎢奈米柱形貌之影響及特性分析 41 4.8.1 晶種層厚度變化對於氧化鎢奈米柱形貌之影響 42 4.8.2 氣體感測器響應特性分析 43 4.9 不同熱處理之氣體感測器響應特性分析 43 4.9.1 X光光電子能譜儀分析 44 4.9.2 氣體感測器響應特性分析 45 4.10 異質接面對於氣體感測器響應特性分析 48 4.10.1 沉積黑金於氧化鎢奈米柱表面之形貌分析 49 4.10.2 具黑金之氧化鎢奈米柱氣體感測器響應特性分析 50 第五章 結論 69 參考文獻 71

    [1]T. Itoh, T. Miwa, A. Tsuruta, T. Akamatsu, N. Izu, W. Shin, J. Park, T. Hida, T. Eda, and Y. Setoguchi, “Development of an exhaled breath monitoring system with semiconductive gas sensors, a gas condenser unit, and gas chromatograph columns”, Sensors, vol. 16, pp. 1891-1−1891-16, 2016.
    [2]G. J. Westerveld, H. P. Voss, R. M. van der Hee, G. J. N. de Haan-Koelewijn, G. J. M. den Hartog, R. A. Scheeren, and A. Bast, “Inhibition of nitric oxide synthase by nasal decongestants”, Eur. Resp. J., vol. 16, pp. 437−444, 2000.
    [3]H. Kudo, Y. Suzuki, T. Gessei, D. Takahashi, T. Arakawa, and K. Mitsubayashi, “Biochemical gas sensor (bio-sniffer) for ultrahigh-sensitive gaseous formaldehyde monitoring”, Biosens. Bioelectron., vol. 26, pp. 854−858, 2010.
    [4]A. Menou, D. Babeanu, H. N. Paruit, A. Ordureau, S. Guillard, and A. Chambellan, “Normal values of offline exhaled and nasal nitric oxide in healthy children and teens using chemiluminescence”, J. Breath Res., vol. 11, pp. 036008-1–036008-9, 2017.
    [5]J. Saito, M. Kikuchi, A. Fukuhara, S. Sato, M. Rikimaru, Y. Suzuki, M. Uematsu, N. Fukuhara, T. Kawamata, T. Umeda, R. Togawa, Y. Sato, T. Koizumi, K. Hirai, H. Minemura, T. Nikaido, K. Kanazawa, Y. Tanino, Y. Shibata, and M. Munakata, “Comparison of fractional exhaled nitric oxide levels measured by different analyzers produced by different manufacturers”, J. Asthma, vol. 57, pp. 1216–1226, 2020.
    [6]H. Kawasaki, J. Namba, K. Iwatsuji, Y. Suda, K. Wada, K. Ebihara, and T. Ohshima, “NOx gas sensing properties of tungsten oxide thin films synthesized by pulsed laser deposition method”, Appl. Surf. Sci. vol. 197−198, pp. 547−551, 2002.
    [7]P. Singh, L. L. Hu, H. W. Zan, and T. Y. Tseng, “Highly sensitive nitric oxide gas sensor based on ZnO-nanorods vertical resistor operated at room temperature”, Nanotechnology, vol. 30, pp. 095501- 1− 095501-9, 2019.
    [8]F. T. Liu, S. F. Gao, S. K. Pei, S. C. Tseng, and C. H. J. Liu, “ZnO nanorod gas sensor for NO2 detection”, J. Taiwan Inst. Chem. Eng., vol. 40, pp. 528-532, 2009.
    [9]T. Lv, Y. Chen, J. Ma, and L. Chen, “Hydrothermally processed SnO2 nanocrystals for ultrasensitive NO sensors”, RSC Adv., vol. 4, pp. 22487−22490, 2014.
    [10] Z. Ma, K. Yang, C. Xiao, and L. Jia, “Electrospun Bi-doped SnO2 porous nanosheets for highly sensitive nitric oxide detection”, J. Hazard. Mater., vol. 416, pp. 126118-1−126118-10, 2021.
    [11] N. Li, W. Zhang, D. L. Wang, G, Li, and Y. Zhao, “Synthesis and applications of TiO2-based nanostructures as photocatalytic materials”, Chem Asian J, vol. 17, pp. 1−16, 2022.
    [12] Z. Liu, L. Sun, Q. Zhang, Z. Teng, H. Sun, and C. Su, “TiO2-supported single-atom catalysts: synthesis, structure, and application”, Springernature, vol 38, pp. 1123−1138, 2022.
    [13] C. S. Rout, K. Ganesh, and A. Govindaraj, and C. N. R. Rao, “Sensors for the nitrogen oxides, NO2, NO and N2O, based on In2O3 and WO3 nanowires”, Appl. Phys. A: Mater. Sci. Process., vol. 85, pp. 241−246, 2006.
    [14] Y. Hu, X. Hu, J. Qiu, W. Quan, W. Qin, X. Min, S. Lu, S. Chen, W. Du, X. Chen, and W. Zhang, “Nitric oxide detector based on WO3 1wt%In2O3 1wt%Nb2O5 with state-of-the-art selectivity and ppb-level sensitivity”, ACS Appl. Mater. Interfaces, vol. 10, pp. 42583−42592, 2018.
    [15] C. T. Lee, H. Y. Lee, and Y. S. Chiu, “Performance improvement of nitrogen oxide gas sensors using au catalytic metal on SnO2/WO3 complex nanoparticle sensing layer”, IEEE Sensors J., vol. 16, pp. 7581-7585, 2016.
    [16] Y. Masuda, “Recant advances in SnO2 nanostructure based gas sensors”, Sens. Actuator B-Chem., vol. 364, pp. 131876-1-131876-27, 2022.
    [17] N. Singh, A. Ponzoni, R. K. Gupta, P. S. Lee, and E. Comini, “Synthesis of In2O3–ZnO core–shell nanowires and their application in gas sensing”, Sens. Actuator B-Chem., vol. 160, pp. 1346−1351, 2011.
    [18] K. G. Krishna, S. Parne, N. Pothukanuri, V. Kathirvelu, S. Gandi, and D. Joshi, “Nanostructured metal oxide semiconductor-based gas sensors:A comprehensive review”, Sens. Actuator A-Phys., vol 341, pp. 113578-1−113578-17, 2022.
    [19] C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, “Metal oxide gas sensors: sensitivity and influencing factors”, Sensors., vol 10, pp. 2088−2106, 2010.
    [20] P. Feng, F. Shao, Y. Shi, and Q. Wan, “Gas sensors based on semiconducting nanowire field-effect transistors”, Sensors, vol 14, pp. 17406−17429, 2014.
    [21] P. A. Gross, T. Larsen, F. Loizeau, T. Jaramillo, D. Spitzer, and B. Pruitt, “Microfabricated electrochemical gas sensor”, Micro Nano Lett., vol 11, pp. 798−802, 2016.
    [22] J. Mayrwoger, P. Hauer, W. Reichl, R. Schwodiauer, C. Krutzler, and B. Jakoby, “Modeling of infrared gas sensors using a ray tracing approach”, IEEE Sens. J., vol. 10, pp. 1691−1698, 2010.
    [23] A. G. Kozlov, “Optimization of structure and power supply conditions of catalytic gas sensor”, Sens. Actuator B-Chem. J., vol. 82, pp. 24−33, 2002.
    [24] A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito, and K. Kalantar-zadeh, “Characterization of ZnO nanobelt-based gas sensor for H2, NO2, and hydrocarbon sensing”, IEEE Sens. J., vol. 7, pp. 919–924, 2007.
    [25] M. Takata, D. Tsubone, and H. Yanagida, “Dependence of electrical conductivity of ZnO on degree of sintering”, J. Am. Ceram. Soc., vol. 59, pp. 4–8, 1976.
    [26] H. Naderia, S. Hajatib, M. Ghaedic, and J. P. Espinosd, “Highly selective few-ppm NO gas-sensing based on necklace-like nanofibers of ZnO/CdO n-n type I heterojunction”, Sens. Actuator B-Chem., vol. 297, pp. 126774-1−126774-10, 2019.
    [27] B. S. de Lima, W. A. S. Silva, A. L. Ndiaye, V. R. Mastelaro, and J. Brunet, “Gas sensors data analysis system: a user-friendly interface for fast and reliable response-recovery analysis”, Chemometrics Intell. Lab. Syst., vol. 220, pp. 104460-1-104460-7, 2022.
    [28] Y. C. Liang and C. W. Chang, “Preparation of orthorhombic WO3 thin films and their crystal quality-dependent dye photodegradation ability”, Coating, vol. 9, pp. 90-1−90-11, 2019.
    [29] L. G. Teoh, Y. M. Hon, J. Shieh, W. H. Lai, and M. H. Hon, “Sensitivity properties of a novel NO2 gas sensor based on mesoporous WO3 thin film”, Sens. Actuator B-Chem., vol. 96, pp. 219−225, 2003.
    [30] S. S. Shendage, V. L. Patil, S. A. Vanalakar, S. P. Patil, N. S. Harale, J. L. Bhosale, J. H. Kim, and P. S. Patil, “Sensitive and selective NO2 gas sensor based on WO3 nanoplates”, Sens. Actuator B-Chem., vol. 240, pp. 426−433, 2017.
    [31] S. Higashimoto, Y. Ushiroda, and M. Azuma, “Electrochemically assisted photocatalysis of hybrid WO3/TiO2 films: effect of the WO3 structures on charge separation behavior”, Top. Catal., vol. 47, pp. 148−154, 2008.
    [32] X. M. Ding, W. L. Liu, Y. Feng, J. Liu, X. B. Zeng, R. Zhou, X. Y. Zhang, R. Wang, and Q. Guo, “Application of WO3 and Zn-doped WO3 prepared by microwave irradiation for photocatalytic degradation of Rhodamine B in water and wastewater”, Int. J. Electrochem. Sci., vol. 17, pp. 221045-1−221045-13, 2022.
    [33] Y. Yin, C. Y. Lan, H. Y. Guo, and C. Li, “Reactive sputter deposition of WO3/Ag/WO3 film for indium tin oxide (ITO)-free electrochromic devices”, ACS Appl. Mater. Interfaces, vol. 8, pp. 3861−3867, 2016.
    [34] D. Wang, P. S. Bassi, H. Qi, X. Zhao, Gurudayal, L. H. Wong, R. Xu, T. Sritharan, and Z. Chen, “Improved charge separation in WO3/CuWO4 composite photoanodes for photoelectrochemical water oxidation”, Materials, vol. 9, pp. 348-1−348-13, 2016.
    [35] H. Ghayour, H. R. Rezaie, Sh. Mirdamadi, and A. A. Nourbakhsh, “The effect of seed layer thickness on alignment and morphology of ZnO nanorods”. Vacuum, vol 86, pp. 101−105, 2011.
    [36] Y. C. Liang and C. S. Hung, “Effects of sputtering deposited homoseed layer microstructures on crystal growth behavior and photoactivity of chemical route-derived WO3 nanorods”, Crystengcomm, vol. 21, pp. 5779−5788, 2019.
    [37] M. R. Alfaro Cruz, O. Ceballos-Sanchez, E. Luevano-Hipolito, and L. M. Torres-Martinez, “ZnO thin films deposited by RF magnetron sputtering: effects of the annealing and atmosphere conditions on the photocatalytic hydrogen production”, Int. J. Hydrog. Energy., vol. 43, pp. 10301-10310, 2018.
    [38] Z. Fu, B. Lin, and J. Zu, “Photoluminescence and structure of ZnO films deposited on Si substrates by metal-organic chemical vapor deposition”, Thin Solid Films, vol. 402, pp. 302−306, 2002.
    [39] G. S. Ahmed, T. H. Mahmoud, H. I. Mohammed, and A. A. Hussein, “Fabrication and study of ZnO thin films using thermal evaporation technique”, Egypt. J. Chem., vol. 64, pp. 5183-5191, 2021.
    [40] N. B. Patila, A. R. Nimbalkara, and M. G. Patil, “ZnO thin film prepared by a sol-gel spin coating technique for NO2 detection”, Mater. Sci. Eng. B, vol. 227, pp. 53-60, 2018.
    [41] M. E. Khan, M. M. Khan, and M. H. Cho, “Fabrication of WO3 nanorods on graphene nanosheets for improved visible light-induced photocapacitive and photocatalytic performance”, RSC adv., vol 6, pp. 20824−20833, 2016.
    [42] H. Hassani, E. Marzbanrad, C. Zamani, and B. Raissi, “Effect of hydrothermal duration on synthesis of WO3 nanorods”, J. Mater. Sci.-Mater. Electron., vol. 22, pp. 1264−1268, 2011.
    [43] F. Zheng, M. Guo, and M. Zhang, “Hydrothermal preparation and optical properties of orientation-controlled WO3 nanorod arrays on ITO substrates”, Crystengcomm, vol. 15, pp. 277−284, 2013.
    [44] N. Li, T. C. Chang, H. Gao, X. Y. Gao, and L. Ge, “Morphology-controlled WO3-x homojunction:hydrothermal synthesis, adsorption properties, and visible-light-driven photocatalytic and chromic properties”, Nanotechnology, vol. 30, pp. 415601-1−415601-11, 2019.
    [45] F. Zheng, M. Zhang, and M. Guo, “Controllable preparation of WO3 nanorod arrays by hydrothermal method”, Thin Solid Films, vol. 534, pp. 45−53, 2013.
    [46] J. H. Bang, M. S. Choi, A. Mirzaei, Y. J. Kwon, S. S. Kim, T. W. Kim, and H. W. Kim, “Selective NO2 sensor based on Bi2O3 branched SnO2 nanowires”, Sens. Actuator B-Chem., vol. 274, pp. 356−369, 2018.
    [47] C. Zhang, G. F. Liu, X. Geng, K. D. Wu, and M. Debliquy, “Metal oxide semiconductors with highly concentrated oxygen vacancies for gas sensing materials: A review”, Sens. Actuator A-Phys., vol, 309, pp. 112026-1–112026-12, 2020.
    [48] Y. Tu, S. Q. Chen, X. Li, J. Gorbaciova, W. P. Gillin, S. Krause, and J. Briscoe, “Control of oxygen vacancies in ZnO nanorods by annealing and their influence on ZnO/PEDOT:PSS diode behaviour”, J. Mater. Chem. C, vol. 6, pp. 1815−1821, 2018.
    [49] H. Xu, J. Zhang, A.U. Rehman, L. Gong, K. Kan, L. Li, and K. Shi, “Synthesis of NiO@CuO nanocomposite as high-performance gas sensing material for NO2 at room temperature”, Appl. Surf. Sci., vol. 412, pp. 230−237, 2017.
    [50] S. Park, S. Kim, H. Kheel, and C. Lee, “Oxidizing gas sensing properties of the n-ZnO/p-Co3O4 composite nanoparticle network sensor”, Sens. Actuator B-Chem., vol. 222, pp. 1193−1200, 2016.
    [51] N. Gandra1, C. Portz, S. Z. Nergiz, A. Fales, T. Vo-Dinh, and S. Singamaneni, “Inherently stealthy and highly tumor-selective gold nanoraspberries for photothermal cancer therapy”, Sci. Rep., vol. 5, pp. 10311-1-10311-10, 2015.
    [52] N. Nelms and J. Dowson, “Gold-black coating for thermal infrared detectors”, Sens. Actuator A-Phys., vol. 120, pp. 403-407, 2005.
    [53] T. H. Yeh, S. Y. Chu, H. Y. Lee, and C. T. Lee, “Performance improvement of nitrogen dioxide gas sensors based on novel p-n heterojunction gold black/VOx bi-sensing membranes”, Mater. Sci. Semicond. Process, vol. 115, pp. 105125-1-105125-6, 2020.
    [54] D. Depla, “On the effective sputter yield during magnetron sputter deposition”, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, vol. 328, pp. 65−69, 2014.
    [55] A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development”, IEEE Trans. Electron. Packag. Manuf., vol. 26, pp. 141-149, 2003.
    [56] H. Y. Lee, S. D. Xia, W. P. Zhang, L. R. Lou, J. T. Yan, and C. T. Lee, “Mechanisms of high quality i-ZnO thin films deposition at low temperature by vapor cooling condensation technique”, J. Appl. Phys., vol. 108, pp. 073119-1-073119-7, 2010.
    [57] T. Peng, D. Ke, J. Xiao, L. Wang, J. Hu, and L. Zan, “Hexagonal phase WO3 nanorods: Hydrothermal preparation, formation mechanism and its photocatalytic O2 production under visible-light irradiation”, J. Solid State Chem., vol. 194, pp. 250−256, 2012.
    [58] A. Hemberg, S. Konstantinidis, P. Viville, F. Renaux, J. P. Dauchot, E. Llobet, and R. Snyders, “Effect of the thickness of reactively sputtered WO3 submicron thin films used for NO2 detection”, Sens. Actuator B-Chem., vol. 171, pp. 18−24, 2012.
    [59] Y. P. Zhang, K. K. Zhu, R. Li, S. Y. Zeng, and L. Wang, “Structural construction of WO3 nanorods as anode materials for lithium-ion batteries to improve their electrochemical performance”, Nanomaterials, vol. 13, pp. 776-1−776-12, 2023.
    [60] A. Khayatian, M. A. Kashi, R. Azimirad, S. Safa, and S. F. A. Akhtarian, “Effect of annealing process in tuning of defects in ZnO nanorods and their application in UV photodetectors”, Optik, vol. 127, pp. 4675-4681, 2016.
    [61] C. Marichy, P. A. Russo, M. Latino, J. P. Tessonnier, M. G. Willinger, N. Donato, G. Neri, and N. Pinna, “Tin dioxide–carbon heterostructures applied to gas sensing: structure-dependent properties and general sensing mechanism”, J. Phys. Chem. C, vol. 117, pp. 19729-19739, 2013.
    [62] L. Y. Jian, H. Y. Lee, and C. T. Lee, “Enhanced nitrogen dioxide gas-sensing performance using tantalum pentoxide-alloyed indium oxide sensing membrane”, IEEE Sens. J., vol. 19, pp. 7829-7834, 2019.

    無法下載圖示 校內:2028-08-23公開
    校外:2028-08-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE