| 研究生: |
連律豪 Lien, Lu-Hao |
|---|---|
| 論文名稱: |
以水熱法成長氧化鎢奈米柱感測膜之一氧化氮氣體感測器特性研究 Investigated performance of NO gas sensors using WO3 nanorod sensing membranes grown by hydrothermal synthesis |
| 指導教授: |
李欣縈
Lee, Hsin-Ying |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 黑金 、異質接面結構 、水熱法 、一氧化氮氣體感測器 、氧化鎢奈米柱 |
| 外文關鍵詞: | Gold-black, Heterojunction, Hydrothermal synthesis method, NO gas sensor, WO3 nanorods |
| 相關次數: | 點閱:72 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1]T. Itoh, T. Miwa, A. Tsuruta, T. Akamatsu, N. Izu, W. Shin, J. Park, T. Hida, T. Eda, and Y. Setoguchi, “Development of an exhaled breath monitoring system with semiconductive gas sensors, a gas condenser unit, and gas chromatograph columns”, Sensors, vol. 16, pp. 1891-1−1891-16, 2016.
[2]G. J. Westerveld, H. P. Voss, R. M. van der Hee, G. J. N. de Haan-Koelewijn, G. J. M. den Hartog, R. A. Scheeren, and A. Bast, “Inhibition of nitric oxide synthase by nasal decongestants”, Eur. Resp. J., vol. 16, pp. 437−444, 2000.
[3]H. Kudo, Y. Suzuki, T. Gessei, D. Takahashi, T. Arakawa, and K. Mitsubayashi, “Biochemical gas sensor (bio-sniffer) for ultrahigh-sensitive gaseous formaldehyde monitoring”, Biosens. Bioelectron., vol. 26, pp. 854−858, 2010.
[4]A. Menou, D. Babeanu, H. N. Paruit, A. Ordureau, S. Guillard, and A. Chambellan, “Normal values of offline exhaled and nasal nitric oxide in healthy children and teens using chemiluminescence”, J. Breath Res., vol. 11, pp. 036008-1–036008-9, 2017.
[5]J. Saito, M. Kikuchi, A. Fukuhara, S. Sato, M. Rikimaru, Y. Suzuki, M. Uematsu, N. Fukuhara, T. Kawamata, T. Umeda, R. Togawa, Y. Sato, T. Koizumi, K. Hirai, H. Minemura, T. Nikaido, K. Kanazawa, Y. Tanino, Y. Shibata, and M. Munakata, “Comparison of fractional exhaled nitric oxide levels measured by different analyzers produced by different manufacturers”, J. Asthma, vol. 57, pp. 1216–1226, 2020.
[6]H. Kawasaki, J. Namba, K. Iwatsuji, Y. Suda, K. Wada, K. Ebihara, and T. Ohshima, “NOx gas sensing properties of tungsten oxide thin films synthesized by pulsed laser deposition method”, Appl. Surf. Sci. vol. 197−198, pp. 547−551, 2002.
[7]P. Singh, L. L. Hu, H. W. Zan, and T. Y. Tseng, “Highly sensitive nitric oxide gas sensor based on ZnO-nanorods vertical resistor operated at room temperature”, Nanotechnology, vol. 30, pp. 095501- 1− 095501-9, 2019.
[8]F. T. Liu, S. F. Gao, S. K. Pei, S. C. Tseng, and C. H. J. Liu, “ZnO nanorod gas sensor for NO2 detection”, J. Taiwan Inst. Chem. Eng., vol. 40, pp. 528-532, 2009.
[9]T. Lv, Y. Chen, J. Ma, and L. Chen, “Hydrothermally processed SnO2 nanocrystals for ultrasensitive NO sensors”, RSC Adv., vol. 4, pp. 22487−22490, 2014.
[10] Z. Ma, K. Yang, C. Xiao, and L. Jia, “Electrospun Bi-doped SnO2 porous nanosheets for highly sensitive nitric oxide detection”, J. Hazard. Mater., vol. 416, pp. 126118-1−126118-10, 2021.
[11] N. Li, W. Zhang, D. L. Wang, G, Li, and Y. Zhao, “Synthesis and applications of TiO2-based nanostructures as photocatalytic materials”, Chem Asian J, vol. 17, pp. 1−16, 2022.
[12] Z. Liu, L. Sun, Q. Zhang, Z. Teng, H. Sun, and C. Su, “TiO2-supported single-atom catalysts: synthesis, structure, and application”, Springernature, vol 38, pp. 1123−1138, 2022.
[13] C. S. Rout, K. Ganesh, and A. Govindaraj, and C. N. R. Rao, “Sensors for the nitrogen oxides, NO2, NO and N2O, based on In2O3 and WO3 nanowires”, Appl. Phys. A: Mater. Sci. Process., vol. 85, pp. 241−246, 2006.
[14] Y. Hu, X. Hu, J. Qiu, W. Quan, W. Qin, X. Min, S. Lu, S. Chen, W. Du, X. Chen, and W. Zhang, “Nitric oxide detector based on WO3 1wt%In2O3 1wt%Nb2O5 with state-of-the-art selectivity and ppb-level sensitivity”, ACS Appl. Mater. Interfaces, vol. 10, pp. 42583−42592, 2018.
[15] C. T. Lee, H. Y. Lee, and Y. S. Chiu, “Performance improvement of nitrogen oxide gas sensors using au catalytic metal on SnO2/WO3 complex nanoparticle sensing layer”, IEEE Sensors J., vol. 16, pp. 7581-7585, 2016.
[16] Y. Masuda, “Recant advances in SnO2 nanostructure based gas sensors”, Sens. Actuator B-Chem., vol. 364, pp. 131876-1-131876-27, 2022.
[17] N. Singh, A. Ponzoni, R. K. Gupta, P. S. Lee, and E. Comini, “Synthesis of In2O3–ZnO core–shell nanowires and their application in gas sensing”, Sens. Actuator B-Chem., vol. 160, pp. 1346−1351, 2011.
[18] K. G. Krishna, S. Parne, N. Pothukanuri, V. Kathirvelu, S. Gandi, and D. Joshi, “Nanostructured metal oxide semiconductor-based gas sensors:A comprehensive review”, Sens. Actuator A-Phys., vol 341, pp. 113578-1−113578-17, 2022.
[19] C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, “Metal oxide gas sensors: sensitivity and influencing factors”, Sensors., vol 10, pp. 2088−2106, 2010.
[20] P. Feng, F. Shao, Y. Shi, and Q. Wan, “Gas sensors based on semiconducting nanowire field-effect transistors”, Sensors, vol 14, pp. 17406−17429, 2014.
[21] P. A. Gross, T. Larsen, F. Loizeau, T. Jaramillo, D. Spitzer, and B. Pruitt, “Microfabricated electrochemical gas sensor”, Micro Nano Lett., vol 11, pp. 798−802, 2016.
[22] J. Mayrwoger, P. Hauer, W. Reichl, R. Schwodiauer, C. Krutzler, and B. Jakoby, “Modeling of infrared gas sensors using a ray tracing approach”, IEEE Sens. J., vol. 10, pp. 1691−1698, 2010.
[23] A. G. Kozlov, “Optimization of structure and power supply conditions of catalytic gas sensor”, Sens. Actuator B-Chem. J., vol. 82, pp. 24−33, 2002.
[24] A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito, and K. Kalantar-zadeh, “Characterization of ZnO nanobelt-based gas sensor for H2, NO2, and hydrocarbon sensing”, IEEE Sens. J., vol. 7, pp. 919–924, 2007.
[25] M. Takata, D. Tsubone, and H. Yanagida, “Dependence of electrical conductivity of ZnO on degree of sintering”, J. Am. Ceram. Soc., vol. 59, pp. 4–8, 1976.
[26] H. Naderia, S. Hajatib, M. Ghaedic, and J. P. Espinosd, “Highly selective few-ppm NO gas-sensing based on necklace-like nanofibers of ZnO/CdO n-n type I heterojunction”, Sens. Actuator B-Chem., vol. 297, pp. 126774-1−126774-10, 2019.
[27] B. S. de Lima, W. A. S. Silva, A. L. Ndiaye, V. R. Mastelaro, and J. Brunet, “Gas sensors data analysis system: a user-friendly interface for fast and reliable response-recovery analysis”, Chemometrics Intell. Lab. Syst., vol. 220, pp. 104460-1-104460-7, 2022.
[28] Y. C. Liang and C. W. Chang, “Preparation of orthorhombic WO3 thin films and their crystal quality-dependent dye photodegradation ability”, Coating, vol. 9, pp. 90-1−90-11, 2019.
[29] L. G. Teoh, Y. M. Hon, J. Shieh, W. H. Lai, and M. H. Hon, “Sensitivity properties of a novel NO2 gas sensor based on mesoporous WO3 thin film”, Sens. Actuator B-Chem., vol. 96, pp. 219−225, 2003.
[30] S. S. Shendage, V. L. Patil, S. A. Vanalakar, S. P. Patil, N. S. Harale, J. L. Bhosale, J. H. Kim, and P. S. Patil, “Sensitive and selective NO2 gas sensor based on WO3 nanoplates”, Sens. Actuator B-Chem., vol. 240, pp. 426−433, 2017.
[31] S. Higashimoto, Y. Ushiroda, and M. Azuma, “Electrochemically assisted photocatalysis of hybrid WO3/TiO2 films: effect of the WO3 structures on charge separation behavior”, Top. Catal., vol. 47, pp. 148−154, 2008.
[32] X. M. Ding, W. L. Liu, Y. Feng, J. Liu, X. B. Zeng, R. Zhou, X. Y. Zhang, R. Wang, and Q. Guo, “Application of WO3 and Zn-doped WO3 prepared by microwave irradiation for photocatalytic degradation of Rhodamine B in water and wastewater”, Int. J. Electrochem. Sci., vol. 17, pp. 221045-1−221045-13, 2022.
[33] Y. Yin, C. Y. Lan, H. Y. Guo, and C. Li, “Reactive sputter deposition of WO3/Ag/WO3 film for indium tin oxide (ITO)-free electrochromic devices”, ACS Appl. Mater. Interfaces, vol. 8, pp. 3861−3867, 2016.
[34] D. Wang, P. S. Bassi, H. Qi, X. Zhao, Gurudayal, L. H. Wong, R. Xu, T. Sritharan, and Z. Chen, “Improved charge separation in WO3/CuWO4 composite photoanodes for photoelectrochemical water oxidation”, Materials, vol. 9, pp. 348-1−348-13, 2016.
[35] H. Ghayour, H. R. Rezaie, Sh. Mirdamadi, and A. A. Nourbakhsh, “The effect of seed layer thickness on alignment and morphology of ZnO nanorods”. Vacuum, vol 86, pp. 101−105, 2011.
[36] Y. C. Liang and C. S. Hung, “Effects of sputtering deposited homoseed layer microstructures on crystal growth behavior and photoactivity of chemical route-derived WO3 nanorods”, Crystengcomm, vol. 21, pp. 5779−5788, 2019.
[37] M. R. Alfaro Cruz, O. Ceballos-Sanchez, E. Luevano-Hipolito, and L. M. Torres-Martinez, “ZnO thin films deposited by RF magnetron sputtering: effects of the annealing and atmosphere conditions on the photocatalytic hydrogen production”, Int. J. Hydrog. Energy., vol. 43, pp. 10301-10310, 2018.
[38] Z. Fu, B. Lin, and J. Zu, “Photoluminescence and structure of ZnO films deposited on Si substrates by metal-organic chemical vapor deposition”, Thin Solid Films, vol. 402, pp. 302−306, 2002.
[39] G. S. Ahmed, T. H. Mahmoud, H. I. Mohammed, and A. A. Hussein, “Fabrication and study of ZnO thin films using thermal evaporation technique”, Egypt. J. Chem., vol. 64, pp. 5183-5191, 2021.
[40] N. B. Patila, A. R. Nimbalkara, and M. G. Patil, “ZnO thin film prepared by a sol-gel spin coating technique for NO2 detection”, Mater. Sci. Eng. B, vol. 227, pp. 53-60, 2018.
[41] M. E. Khan, M. M. Khan, and M. H. Cho, “Fabrication of WO3 nanorods on graphene nanosheets for improved visible light-induced photocapacitive and photocatalytic performance”, RSC adv., vol 6, pp. 20824−20833, 2016.
[42] H. Hassani, E. Marzbanrad, C. Zamani, and B. Raissi, “Effect of hydrothermal duration on synthesis of WO3 nanorods”, J. Mater. Sci.-Mater. Electron., vol. 22, pp. 1264−1268, 2011.
[43] F. Zheng, M. Guo, and M. Zhang, “Hydrothermal preparation and optical properties of orientation-controlled WO3 nanorod arrays on ITO substrates”, Crystengcomm, vol. 15, pp. 277−284, 2013.
[44] N. Li, T. C. Chang, H. Gao, X. Y. Gao, and L. Ge, “Morphology-controlled WO3-x homojunction:hydrothermal synthesis, adsorption properties, and visible-light-driven photocatalytic and chromic properties”, Nanotechnology, vol. 30, pp. 415601-1−415601-11, 2019.
[45] F. Zheng, M. Zhang, and M. Guo, “Controllable preparation of WO3 nanorod arrays by hydrothermal method”, Thin Solid Films, vol. 534, pp. 45−53, 2013.
[46] J. H. Bang, M. S. Choi, A. Mirzaei, Y. J. Kwon, S. S. Kim, T. W. Kim, and H. W. Kim, “Selective NO2 sensor based on Bi2O3 branched SnO2 nanowires”, Sens. Actuator B-Chem., vol. 274, pp. 356−369, 2018.
[47] C. Zhang, G. F. Liu, X. Geng, K. D. Wu, and M. Debliquy, “Metal oxide semiconductors with highly concentrated oxygen vacancies for gas sensing materials: A review”, Sens. Actuator A-Phys., vol, 309, pp. 112026-1–112026-12, 2020.
[48] Y. Tu, S. Q. Chen, X. Li, J. Gorbaciova, W. P. Gillin, S. Krause, and J. Briscoe, “Control of oxygen vacancies in ZnO nanorods by annealing and their influence on ZnO/PEDOT:PSS diode behaviour”, J. Mater. Chem. C, vol. 6, pp. 1815−1821, 2018.
[49] H. Xu, J. Zhang, A.U. Rehman, L. Gong, K. Kan, L. Li, and K. Shi, “Synthesis of NiO@CuO nanocomposite as high-performance gas sensing material for NO2 at room temperature”, Appl. Surf. Sci., vol. 412, pp. 230−237, 2017.
[50] S. Park, S. Kim, H. Kheel, and C. Lee, “Oxidizing gas sensing properties of the n-ZnO/p-Co3O4 composite nanoparticle network sensor”, Sens. Actuator B-Chem., vol. 222, pp. 1193−1200, 2016.
[51] N. Gandra1, C. Portz, S. Z. Nergiz, A. Fales, T. Vo-Dinh, and S. Singamaneni, “Inherently stealthy and highly tumor-selective gold nanoraspberries for photothermal cancer therapy”, Sci. Rep., vol. 5, pp. 10311-1-10311-10, 2015.
[52] N. Nelms and J. Dowson, “Gold-black coating for thermal infrared detectors”, Sens. Actuator A-Phys., vol. 120, pp. 403-407, 2005.
[53] T. H. Yeh, S. Y. Chu, H. Y. Lee, and C. T. Lee, “Performance improvement of nitrogen dioxide gas sensors based on novel p-n heterojunction gold black/VOx bi-sensing membranes”, Mater. Sci. Semicond. Process, vol. 115, pp. 105125-1-105125-6, 2020.
[54] D. Depla, “On the effective sputter yield during magnetron sputter deposition”, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, vol. 328, pp. 65−69, 2014.
[55] A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development”, IEEE Trans. Electron. Packag. Manuf., vol. 26, pp. 141-149, 2003.
[56] H. Y. Lee, S. D. Xia, W. P. Zhang, L. R. Lou, J. T. Yan, and C. T. Lee, “Mechanisms of high quality i-ZnO thin films deposition at low temperature by vapor cooling condensation technique”, J. Appl. Phys., vol. 108, pp. 073119-1-073119-7, 2010.
[57] T. Peng, D. Ke, J. Xiao, L. Wang, J. Hu, and L. Zan, “Hexagonal phase WO3 nanorods: Hydrothermal preparation, formation mechanism and its photocatalytic O2 production under visible-light irradiation”, J. Solid State Chem., vol. 194, pp. 250−256, 2012.
[58] A. Hemberg, S. Konstantinidis, P. Viville, F. Renaux, J. P. Dauchot, E. Llobet, and R. Snyders, “Effect of the thickness of reactively sputtered WO3 submicron thin films used for NO2 detection”, Sens. Actuator B-Chem., vol. 171, pp. 18−24, 2012.
[59] Y. P. Zhang, K. K. Zhu, R. Li, S. Y. Zeng, and L. Wang, “Structural construction of WO3 nanorods as anode materials for lithium-ion batteries to improve their electrochemical performance”, Nanomaterials, vol. 13, pp. 776-1−776-12, 2023.
[60] A. Khayatian, M. A. Kashi, R. Azimirad, S. Safa, and S. F. A. Akhtarian, “Effect of annealing process in tuning of defects in ZnO nanorods and their application in UV photodetectors”, Optik, vol. 127, pp. 4675-4681, 2016.
[61] C. Marichy, P. A. Russo, M. Latino, J. P. Tessonnier, M. G. Willinger, N. Donato, G. Neri, and N. Pinna, “Tin dioxide–carbon heterostructures applied to gas sensing: structure-dependent properties and general sensing mechanism”, J. Phys. Chem. C, vol. 117, pp. 19729-19739, 2013.
[62] L. Y. Jian, H. Y. Lee, and C. T. Lee, “Enhanced nitrogen dioxide gas-sensing performance using tantalum pentoxide-alloyed indium oxide sensing membrane”, IEEE Sens. J., vol. 19, pp. 7829-7834, 2019.
校內:2028-08-23公開