簡易檢索 / 詳目顯示

研究生: 陳怡婷
Chen, Yi-Ting
論文名稱: 傘齒輪運動分析─使用常微分方程法
Bevel Gear Motion Analysis ─ Using the Ordinary Differential Equation Method
指導教授: 沈士育
Shen, Shi-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 49
中文關鍵詞: 剛體運動接觸條件常微分方程
外文關鍵詞: rigid body motion, contact conditions, Ordinary Differential Equations.
相關次數: 點閱:138下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 齒輪機構在工業產品中廣泛應用,其設計與製造水平直接影響到工業產品的品質。本研究從兩齒輪之間的接觸條件,到齒輪運動之常微分方程式,再利用數值方法求解來求其運動,並對特定齒形之齒輪加以探討與研究。
    假設兩齒輪在空間中作剛體運動,主動齒輪接觸被動齒輪而後旋轉,兩傘齒輪齒形為球面上的兩條平滑曲線,此兩曲線可分別對不同軸旋轉,利用其接觸條件可導出兩齒輪的運動常微分方程式。
    利用上述推導的常微分方程式,給定一個已知解的特例,以兩種數值方法(Euler數值方法與四階Runge-Kutta數值方法)寫入程式中求得數值解,再與正確解作比較,分析結果與誤差,結果顯示該運動之常微分方程正確無誤,但數值法中的曲線內插函數需使用更高階的方法。

    Gear mechanisms are indispensable components used in the industrial, the design and level of manufacturing directly affect the quality of industrial products. In this paper, we describe the contact conditions of two gears to derive formulas of ordinary differential equations, use numerical methods for observing their motion, and discuss for the specific tooth shape gear.
    Suppose that two gears do the rigid body motion in space, the driving gear contact the driven gear and rotate each other, the tooth of two bevel gears could be regarded as the curve of the spherical surface, the two curves could rotate with the different axis, we use the contact condition to derive formulas of ordinary differential equations.
    We use ordinary differential equations and give a special case of the known solution and input the program to solve it by Euler method and Runge-Kutta method, then we compare it with the analytic solution and analysis results and errors, the results showed that the movement of ordinary differential equations is correct, but the interpolation functions of the curve need to use more advanced methods.

    第一章 緒論(1) 1.1 前言(1) 1.1.1 齒輪歷史(1) 1.1.2 齒輪種類介紹(3) 1.2 本文大綱(5) 第二章 數學模型(6) 2.1 接觸條件(6) 2.2 常微分方程(9) 第三章 漸開線齒形(15) 3.1 平面漸開線(15) 3.2 球面漸開線(17) 3.2.1 球面漸開線之相關公式(17) 3.2.2 球面上曲線的旋轉運動(19) 第四章 數值方法(21) 4.1 Euler與Runge-Kutta數值方法(21) 4.1.1 Euler數值方法(21) 4.1.2 Runge-Kutta數值方法(22) 4.1.3 綜合比較(24) 4.2 離散化曲線(25) 4.2.1 離散化曲線的建構(25) 4.2.2 離散化曲線的旋轉(28) 第五章 數值實例(29) 5.1 數值實例之參數(29) 5.2 數值解(37) 第六章 結論(42) 附錄 程式指令(44) 參考文獻(49)

    [1]C.F., Gerald, P.O., Applied numerical analysis, Wheatly, 6th edition, 1999.
    [2]John H. Mathews and Kurtis K. Fink, Numerical Methods Using Matlab, 4 th edition, Prentice-Hall, New Jersey, 2004.
    [3]Robert L. Norton著,謝慶雄譯,機構學,第三版,高立圖書有限公司,2005.
    [4]小原齒車工業株式會社,齒輪技術入門篇,小原齒車工業株式會社,2006.
    [5]陳晟騄,數值微分方程在切削刀具路徑規劃上之應用,國立成功大學應用數學所碩士論文,2012.
    [6]陳政逸,齒輪運動分析使用常微分方程,國立成功大學應用數學所碩士論文, 2011.
    [7]郭育里,齒印接觸分析之數值方法,國立成功大學應用數學所碩士論文,2008.
    [8]彭國倫,精通Fortran 95程式設計,碁峰資訊,2001.
    [9]劉柏村,空間漸開線齒面之合成與接觸分析,國立成功大學機械工程所碩士論文,2006.

    下載圖示 校內:2014-07-31公開
    校外:2014-07-31公開
    QR CODE