| 研究生: |
羅綉瑩 Luo, Siou-Ying |
|---|---|
| 論文名稱: |
瘧原蟲質體樣細胞器DNA聚合酶生化特性之研究 Biochemical characterization of apicoplast genome DNA polymerase from Plasmodium falciparum |
| 指導教授: |
陳呈堯
Chen, Cheng-Yao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 瘧疾 、惡性瘧原蟲 、質體樣細胞器 、DNA聚合酶 、DNA複製 |
| 外文關鍵詞: | Malaria, Plasmodium falciparum, apicoplast, DNA polymerase, DNA replication |
| 相關次數: | 點閱:56 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
惡性瘧原蟲 (Plasmodium falciparum),屬於Apicomplexa門的單細胞寄生性原生動物,是造成惡性瘧疾及死亡的主要瘧原蟲。Apicomplexa動物門的寄生蟲有個特點,它們大多含有一個特殊的質體樣細胞器 (apicoplast),參與原蟲細胞許多重要的代謝途徑,對原蟲的存活來說不可或缺。P. falciparum質體樣細胞器有屬於自己的一個環狀DNA,AT序列的組成含量特別地高 (86.9%),而DNA複製由唯一一個DNA聚合酶Pom1負責。由於apicoplast是獨特唯一的胞器,與原蟲細胞生存息息相關,負責複製DNA的唯一DNA聚合酶與哺乳類動物不同源,因此我們認為Pom1會是具有潛力的藥物標的,本研究的目的即在探討DNA聚合酶Pom1的生化特性與功能。Pom1是個很大的蛋白質複合體,可區分成三個結構域 (domain) :DNA引子酶、DNA解旋酶和DNA聚合酶。其中DNA聚合酶結構域簡稱為KPom1,可區分為兩個次結構域 (subdomain) :5'→3' DNA 聚合酶,以及3'→5' DNA核酸外切酶。KPoml與大腸桿菌DNA 聚合酶 I的Klenow片段同源,在我們的研究中發現,野生型KPom1WT可在缺失了Pol I的大腸桿菌體內替補Pol I的功能,使之存活,但無法有效複製ColE1型質體,與之相反的是缺失外切酶活性的KPom1exo-則能有效率複製。純化出蛋白之後,藉由活性測試,我們發現KPom1WT缺乏nick-translation活性,以及在AT-DNA模板上沒有strand-displacement活性,這是複製ColE1型質體所必需的活性,然而KPom1exo-則是兩個活性都具備。此外,無論下游引子是DNA或RNA都不影響結果。此結果也表示KPom1在複製DNA的過程中有能力分辨AT或GC-DNA模板,而這個特性是Klenow和同樣是質體樣細胞器 DNA聚合酶的ToxoPol所沒有的,因此是KPom1獨有的特性。另外,我們在KPom1exo- DNA結構域的motif B上做1848位置組胺酸轉精胺酸(H1848R)的點突變,發現這個點突變會提升KPom1exo-對核苷酸的選擇性,同時也發現KPom1exo-本身就能有效率地在DNA複製的過程中使用雙去氧核甘酸和抗病毒藥物更昔洛韋。最後,我們確定KPom1和Klenow 片段一樣具有能夠在雙股DNA平滑末端加上一至多個腺嘌呤的能力。
Plasmodium falciparum, a unicellular parasite belongs to the phylum of Apicomplexa, is a major causative agent of human severe malaria, which threatens millions of life globally. The apicomplexan parasites commonly harbor a unique non-photosynthetic plastid, apicoplast, which involves in various, metabolic pathways and is vital for the parasite survival. The apicoplast has its own genome, which is highly AT-rich (~86.9%) in P. falciparum. The replication of the apicoplast genome is solely achieved by the polymerase of malaria 1 (Pom1), which is a single polypeptide that contains three distinct, functional domains: DNA primase, DNA helicase, and DNA polymerase, respectively. Since Pom1 is essential to parasite and has no orthologs in mammals, we consider it is a potential antimalarial drug target. Our objective is to elucidate the biochemical functions and properties of Pom1 from P. falciparum. The DNA polymerase domain of Pom1, designed as KPom1 in this study, is homologues to the Klenow fragment of E. coli DNA polymerase I (Pol I), which contains a 3'→5' exonuclease (exo) and 5'→3' DNA polymerase (pol) domain. In our study, we demonstrated that KPom1WT can functionally substitute for E. coli Pol I in vivo. However, KPom1WT only partially, while KPom1exo- efficiently, maintains the ColE1 plasmid. In the biochemical studies, both KPom1WT and KPom1exo- proteins were purified and characterized. The results showed that KPom1WT lacks both DNA nick-translation and strand-displacement synthesis functions, which is essential for the efficient initiation of DNA replication of ColE1-type plasmid. In the primer extension assays, KPom1 can differentiate AT- from GC-rich template regardless of the presence of downstream DNA or RNA primer. This enzymatic property is unique to KPom1, since homologous Klenow and ToxoPol, apicoplast DNA polymerase from T. gondii, do not have this feature. In separate experiments, I discovered that KPom1 can naturally incorporate sugar-modified nucleotide analogs, such as dideoxynucleosides and anti-viral ganciclovir, and a H1848R mutation in the motif B of KPom1 increases the base-analogous selectivity of KPom1. Finally, like Klenow enzyme, KPom1 also has an A-tailing function, which adds an extra dATP to the recessed DNA ends.
1. Mueller, I., P.A. Zimmerman, and J.C. Reeder, Plasmodium malariae and Plasmodium ovale – the‘bashful’ malaria parasites. Trends in Parasitology, 2007. 23(6): p. 278-283.
2. Collins, W.E., Plasmodium knowlesi: A Malaria Parasite of Monkeys and Humans. Annual Review of Entomology, 2012. 57(1): p. 107-121.
3. Bartoloni, A. and L. Zammarchi, Clinical aspects of uncomplicated and severe malaria. Mediterr J Hematol Infect Dis, 2012. 4(1): p. e2012026.
4. Cohen, C., A. Karstaedt, J. Frean, J. Thomas, N. Govender, E. Prentice, L. Dini, J. Galpin, and H. Crewe-Brown, Increased Prevalence of Severe Malaria in HIV-Infected Adults in South Africa. Clinical Infectious Diseases, 2005. 41(11): p. 1631-1637.
5. Mulu, A., M. Legesse, B. Erko, Y. Belyhun, D. Nugussie, T. Shimelis, A. Kassu, D. Elias, and B. Moges, Epidemiological and clinical correlates of malaria-helminth co-infections in Southern Ethiopia. Malar J, 2013. 12: p. 227.
6. Phillips, M.A., J.N. Burrows, C. Manyando, R.H. van Huijsduijnen, W.C. Van Voorhis, and T.N.C. Wells, Malaria. Nature Reviews Disease Primers, 2017. 3: p. 17050.
7. Maitland, K., Severe Malaria in African Children — The Need for Continuing Investment. New England Journal of Medicine, 2016. 375(25): p. 2416-2417.
8. Lengeler, C., Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst Rev, 2004(2): p. Cd000363.
9. Eisele, T.P., D. Larsen, and R.W. Steketee, Protective efficacy of interventions for preventing malaria mortality in children in Plasmodium falciparum endemic areas. International Journal of Epidemiology, 2010. 39(Suppl 1): p. i88-i101.
10. Bhatt, S., et al., The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature, 2015. 526(7572): p. 207-211.
11. Cairns, M., A. Roca-Feltrer, T. Garske, A. Wilson, D. Diallo, P. Milligan, A. C Ghani, and B. M Greenwood, Estimating the potential public health impact of seasonal malaria chemoprevention in African children. Vol. 3. 2012. 881.
12. Daily, J.P., Malaria 2017: Update on the Clinical Literature and Management. Current Infectious Disease Reports, 2017. 19(8): p. 28.
13. Krafts, K., E. Hempelmann, and A. Skórska-Stania, From methylene blue to chloroquine: a brief review of the development of an antimalarial therapy. Parasitology Research, 2012. 111(1): p. 1-6.
14. Ridley, R.G., Medical need, scientific opportunity and the drive for antimalarial drugs. Nature, 2002. 415: p. 686.
15. Payne, D., Spread of chloroquine resistance in Plasmodium falciparum. Parasitology Today, 1987. 3(8): p. 241-246.
16. Van Voorhis, W.C., R. Hooft van Huijsduijnen, and T.N.C. Wells, Profile of William C. Campbell, Satoshi Ōmura, and Youyou Tu, 2015 Nobel Laureates in Physiology or Medicine. Proceedings of the National Academy of Sciences, 2015. 112(52): p. 15773-15776.
17. Bouth, D.M., et al., Surveillance of the efficacy of artesunate and mefloquine combination for the treatment of uncomplicated falciparum malaria in Cambodia. Tropical Medicine & International Health, 2006. 11(9): p. 1360-1366.
18. Noedl, H., Y. Se, K. Schaecher, B.L. Smith, D. Socheat, and M.M. Fukuda, Evidence of Artemisinin-Resistant Malaria in Western Cambodia. New England Journal of Medicine, 2008. 359(24): p. 2619-2620.
19. Dondorp, A.M., et al., Artemisinin Resistance in Plasmodium falciparum Malaria. New England Journal of Medicine, 2009. 361(5): p. 455-467.
20. Phyo, A.P., et al., Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. The Lancet, 2012. 379(9830): p. 1960-1966.
21. Prosser, C., W. Meyer, J. Ellis, and R. Lee, Resistance screening and trend analysis of imported falciparum malaria in NSW, Australia (2010 to 2016). PLOS ONE, 2018. 13(5): p. e0197369.
22. McFadden, G.I., M.E. Reith, J. Munholland, and N. Lang-Unnasch, Plastid in human parasites. Nature, 1996. 381: p. 482.
23. Köhler, S., C.F. Delwiche, P.W. Denny, L.G. Tilney, P. Webster, R.J.M. Wilson, J.D. Palmer, and D.S. Roos, A Plastid of Probable Green Algal Origin in Apicomplexan Parasites. Science, 1997. 275(5305): p. 1485-1489.
24. Moore, R.B., et al., A photosynthetic alveolate closely related to apicomplexan parasites. Nature, 2008. 451: p. 959.
25. Janouškovec, J., A. Horák, M. Oborník, J. Lukeš, and P.J. Keeling, A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proceedings of the National Academy of Sciences, 2010. 107(24): p. 10949-10954.
26. Waller, R.F., et al., Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America, 1998. 95(21): p. 12352-12357.
27. Sato, S., B. Clough, L. Coates, and R.J. Wilson, Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum. Protist, 2004. 155(1): p. 117-25.
28. Jomaa, H., et al., Inhibitors of the Nonmevalonate Pathway of Isoprenoid Biosynthesis as Antimalarial Drugs. Science, 1999. 285(5433): p. 1573-1576.
29. Seeber, F., Biosynthetic pathways of plastid-derived organelles as potential drug targets against parasitic apicomplexa. Curr Drug Targets Immune Endocr Metabol Disord, 2003. 3(2): p. 99-109.
30. Ralph, S.A., G.G. van Dooren, R.F. Waller, M.J. Crawford, M.J. Fraunholz, B.J. Foth, C.J. Tonkin, D.S. Roos, and G.I. McFadden, Metabolic maps and functions of the Plasmodium falciparum apicoplast. Nature Reviews Microbiology, 2004. 2: p. 203.
31. McFadden, G.I., The apicoplast. Protoplasma, 2011. 248(4): p. 641-650.
32. Fichera, M.E. and D.S. Roos, A plastid organelle as a drug target in apicomplexan parasites. Nature, 1997. 390: p. 407.
33. He, C.Y., M.K. Shaw, C.H. Pletcher, B. Striepen, L.G. Tilney, and D.S. Roos, A plastid segregation defect in the protozoan parasite Toxoplasma gondii. The EMBO Journal, 2001. 20(3): p. 330-339.
34. Fleige, T. and D. Soldati-Favre, Targeting the Transcriptional and Translational Machinery of the Endosymbiotic Organelle in Apicomplexans. Current Drug Targets, 2008. 9(11): p. 948-956.
35. Wilson, R.J.M., et al., Complete Gene Map of the Plastid-like DNA of the Malaria ParasitePlasmodium falciparum. Journal of Molecular Biology, 1996. 261(2): p. 155-172.
36. Kennedy, S.R., C.-Y. Chen, M.W. Schmitt, C.N. Bower, and L.A. Loeb, The biochemistry and fidelity of synthesis by the apicoplast genome replication DNA polymerase Pfprex from the Malaria parasite Plasmodium falciparum. Journal of molecular biology, 2011. 410(1): p. 27-38.
37. Seow, F., S. Sato, C.S. Janssen, M.O. Riehle, A. Mukhopadhyay, R.S. Phillips, R.J.M. Wilson, and M.P. Barrett, The plastidic DNA replication enzyme complex of Plasmodium falciparum. Molecular and Biochemical Parasitology, 2005. 141(2): p. 145-153.
38. Gallagher, J.R., K.A. Matthews, and S.T. Prigge, Plasmodium falciparum apicoplast transit peptides are unstructured in vitro and during apicoplast import. Traffic, 2011. 12(9): p. 1124-38.
39. Cai, H., R. Kuang, J. Gu, and Y. Wang, Proteases in Malaria Parasites - A Phylogenomic Perspective. Current Genomics, 2011. 12(6): p. 417-427.
40. Lindner, S.E., M. Llinas, J.L. Keck, and S.H. Kappe, The primase domain of PfPrex is a proteolytically matured, essential enzyme of the apicoplast. Mol Biochem Parasitol, 2011. 180(2): p. 69-75.
41. Bhowmick, K. and S.K. Dhar, Plasmodium falciparum single-stranded DNA-binding protein (PfSSB) interacts with PfPrex helicase and modulates its activity. FEMS Microbiol Lett, 2014. 351(1): p. 78-87.
42. Joyce, C.M. and T.A. Steitz, Function and structure relationships in DNA polymerases. Annu Rev Biochem, 1994. 63: p. 777-822.
43. Milton, M.E. and S.W. Nelson, Replication and maintenance of the Plasmodium falciparum apicoplast genome. Molecular and Biochemical Parasitology, 2016. 208(2): p. 56-64.
44. Milton, M.E., J.-Y. Choe, R.B. Honzatko, and S.W. Nelson, Crystal Structure of the Apicoplast DNA Polymerase from Plasmodium falciparum: The First Look at a Plastidic A-Family DNA Polymerase. Journal of Molecular Biology, 2016. 428(20): p. 3920-3934.
45. Sweasy, J.B. and L.A. Loeb, Detection and characterization of mammalian DNA polymerase beta mutants by functional complementation in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 1993. 90(10): p. 4626-4630.
46. Takeshita, S., M. Sato, M. Toba, W. Masahashi, and T. Hashimoto-Gotoh, High-copy-number and low-copy-number plasmid vectors for lacZα-complementation and chloramphenicol- or kanamycin-resistance selection. Gene, 1987. 61(1): p. 63-74.
47. Shinkai, A. and L.A. Loeb, In vivo mutagenesis by Escherichia coli DNA polymerase I. Ile(709) in motif A functions in base selection. J Biol Chem, 2001. 276(50): p. 46759-64.
48. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976. 72(1): p. 248-254.
49. Tabor, S. and C.C. Richardson, A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 1995. 92(14): p. 6339-6343.
50. Tabor, S. and C.C. Richardson, Selective inactivation of the exonuclease activity of bacteriophage T7 DNA polymerase by in vitro mutagenesis. J Biol Chem, 1989. 264(11): p. 6447-58.
51. Reha-Krantz, L.J., S. Stocki, R.L. Nonay, E. Dimayuga, L.D. Goodrich, W.H. Konigsberg, and E.K. Spicer, DNA polymerization in the absence of exonucleolytic proofreading: in vivo and in vitro studies. Proceedings of the National Academy of Sciences of the United States of America, 1991. 88(6): p. 2417-2421.
52. Jin, Y.H., R. Obert, P.M.J. Burgers, T.A. Kunkel, M.A. Resnick, and D.A. Gordenin, The 3′→5′ exonuclease of DNA polymerase δ can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98(9): p. 5122-5127.
53. Zhu, Y., K.S. Trego, L. Song, and D.S. Parris, 3' to 5' exonuclease activity of herpes simplex virus type 1 DNA polymerase modulates its strand displacement activity. J Virol, 2003. 77(18): p. 10147-53.
54. He, Q., C.K. Shumate, M.A. White, I.J. Molineux, and Y.W. Yin, Exonuclease of human DNA polymerase gamma disengages its strand displacement function. Mitochondrion, 2013. 13(6): p. 592-601.
55. Garg, P., C.M. Stith, N. Sabouri, E. Johansson, and P.M. Burgers, Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication. Genes Dev, 2004. 18(22): p. 2764-73.
56. Manosas, M., M.M. Spiering, F. Ding, D. Bensimon, J.F. Allemand, S.J. Benkovic, and V. Croquette, Mechanism of strand displacement synthesis by DNA replicative polymerases. Nucleic Acids Res, 2012. 40(13): p. 6174-86.
57. Morin, J.A., F.J. Cao, J.M. Lázaro, J.R. Arias-Gonzalez, J.M. Valpuesta, J.L. Carrascosa, M. Salas, and B. Ibarra, Active DNA unwinding dynamics during processive DNA replication. Proceedings of the National Academy of Sciences, 2012.
58. Singh, K., A. Srivastava, S.S. Patel, and M.J. Modak, Participation of the fingers subdomain of Escherichia coli DNA polymerase I in the strand displacement synthesis of DNA. J Biol Chem, 2007. 282(14): p. 10594-604.
59. Loh, E. and L.A. Loeb, Mutability of DNA polymerase I: implications for the creation of mutant DNA polymerases. DNA Repair (Amst), 2005. 4(12): p. 1390-8.
60. Reha-Krantz, L.J., Learning about DNA polymerase function by studying antimutator DNA polymerases. Trends Biochem Sci, 1995. 20(4): p. 136-40.
61. Wu, P., N. Nossal, and S.J. Benkovic, Kinetic Characterization of a Bacteriophage T4 Antimutator DNA Polymerase. Biochemistry, 1998. 37(42): p. 14748-14755.
62. Howell, C.A., C.M. Kondratick, and M.T. Washington, Substitution of a residue contacting the triphosphate moiety of the incoming nucleotide increases the fidelity of yeast DNA polymerase ζ. Nucleic Acids Research, 2008. 36(5): p. 1731-1740.