簡易檢索 / 詳目顯示

研究生: 楊亦甯
Yang, Yi-Ning
論文名稱: 偵測C-反應蛋白之微流體系統晶片
Integrated Microfluidic System for C-reactive Protein Detection
指導教授: 李國賓
Lee, Gwo-bin
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 74
中文關鍵詞: 磁珠適合體連結免疫分析法漩渦式混合器被動式閥門C-反應蛋白微流體單股去氧核醣核酸適合體
外文關鍵詞: microfluidics, microvalve, micropumps, micromixer, C-reactive protein (CRP), aptamers
相關次數: 點閱:120下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為一自動化之整合型微流體晶片系統平台,藉由磁珠上具有與C-反應蛋白(C-reactive protein, CRP)高親和力以及高特異性的單股去氧核醣核酸適合體(CRP ssDNA aptamers),進行磁珠適合體連結免疫分析法檢測流程,藉以偵測C-反應蛋白濃度的冷光值。CRP的濃度為人體發炎反應的指標,文獻中顯示CRP在低濃度時亦與心血管疾病的發生率呈現正相關,因此高敏感CPR(High-sensitivity CRP, Hs-CRP)可視為心血管疾病之風險評估因子。
    利用微流體晶片系統平台之優點,如體積小、低耗能、反應快及靈敏度高等,可將傳統磁珠酵素連結免疫分析法縮小化於一晶片上。此晶片中包含微型幫浦、微型閥門及微型漩渦式混合器等元件,文中針對各元件作介紹與分析。不僅將微幫浦與微被動式閥門作一整合成具有新式微蠕動幫浦,提升了原先蠕動式幫浦的效率約4倍,背壓在微幫浦輸入頻率20 psi、90 Hz的情況下高達了85 cm-H2O。而微型漩渦式混合器在7 Hz、氣壓20 psi, 1.5秒內混合指數可由17.08% 增加到96.74%,使檢體能在最短的時間內有最佳的混合效率並且有效的提升檢測的靈敏度。接著將所有元件進行整合達到自動化傳輸流體、混合的功能,最後將微流體系統晶片應用於磁珠適合體連結免疫分析法C-反應蛋白之定量分析。
    本研究成功的使偵測極限由傳統手動的0.125 mg/L,提高到0.0125 mg/L,並且檢體量減少為傳統檢測的一半,反應時間也由2小時30分縮短至25分,線性度也優於傳統檢測分析,並且透過外部控制系統可以同時平行處理四組磁珠適合體連結免疫分析法的C-反應蛋白之定量分析。證明了利用此C-反應蛋白檢測晶片在生醫檢測分析上確實大大地提升檢測的效能與靈敏度。

    This study presents an integrated microfluidic chip consisting of pneumatic micropumps, normally-close microvalves and vortex-type micromixers for C-reactive protein (CRP) detection. CRP is a protein produced during inflammatory process. It was reported that serum CRP can be used for risk assessment of cardiovascular disease. In this study, CRP can be measured by using an immunoassay involving magnetic beads surface-modified with CRP-specific single-strain DNA (ssDNA) aptamers. The transportation of samples and reagents was performed by using the pneumatic micropumps and microvalves. The incubation and reaction processes were operated by using the vortex-type micromixer. The entire process can be then performed automatically on a single chip. The experimental results showed that the new pneumatic micropump could successfully increase the pumping rate about 4-fold higher than that without passive valves with the back pressure about 85 cm-H2O at the conditions of 20 psi and 90Hz. For the vortex-type micromixer, the mixing index could be increased from 17.08% to 96.74% within 1.5 seconds at the conditions of 20 psi and 7 Hz. The reaction time can be significantly reduced utilizing the proposed vortex-type micromixer. The functionality of the device has been demonstrated through its improved CRP detection limit from 0.125mg/L to 0.0125 mg/L when compared with traditional methods.

    目 錄 中文摘要 IV Abstract VI 誌謝 VIII 表目錄 X 圖目錄 XI 符號說明 IXV 第一章 緒論 1-1 前言 1 1-2 生醫微機電系統簡介 1 1-3 微流體生物晶片 4 1-4 研究動機與目的 6 1-5 文獻回顧 8 1-5-1 CRP檢測文獻回顧 8 1-5-2微幫浦及微閥門文獻回顧 15 1-5-3微混合器文獻回顧 21 1-6 論文架構 26 第二章 理論基礎理論 2-1 CRP檢測流程 27 2-2傳統CRP檢測流程之微型化 29 2-3新式微蠕動幫浦設計原理 30 2-4微氣動式混和器設計原理 33 2-5 C-反應蛋白整合檢測晶片設計 35 第三章 材料與方法 3-1 材料選擇 37 3-2 晶片製程 38 3-2-1 PMMA母模製程 38 3-2-2 SU-8母模製程 39 3-2-3 PDMS翻模製程 43 3-2-4 晶片封裝 44 3-3實驗架設與流程 3-3-1實驗架設 47 3-3-2實驗流程 48 第四章 結果討論 4-1新式微蠕動幫浦效能測試 50 4-1-1新式微蠕動幫浦之傳輸速率與薄膜作動分析 50 4-1-2新式微蠕動幫浦幫浦之背壓量測 54 4-1-3 pH檢測新式微蠕動幫浦之傳輸效益 56 4-2微漩渦式混和器效能測試 58 4-3 CRP檢測晶片冷光檢測值並與傳統手動操作冷光值比較 60 4-4 利用CRP檢測晶片檢測臨床血清之C-反應蛋白檢測值 62 第五章 結論與未來展望 5-1 結論 64 5-2 未來展望 65 參考資料 66 自述 74

    [1] T. Richter, L. Loranelle, O. D. Richtard, U. Bilitewski, D. J. Harrison, “Bi-enzymatic and capillary electrophoretic analysis of non-fluorescent compounds in microfluidic devices: Determination of xanthine,” Sensors and Actuators B, 81, 2002, 369-376
    [2] I. Burbulis, K. Yamaguchi, A. Gordon, R. Carlson, and R. Brent, “Using protein-DNA chimeras to detect and count small numbers of molecules,” Nature Methods, 2, 2005, 31- 37
    [3] K. Kriz, F. Ibraimi, M. Lu, L. Hansson, D. Kriz, “Rapid one-step whole blood C–reactive protein magnetic permeability immunoassay with monoclonal antibody conjugated nanoparticles as superparamagnetic labels and enhanced sedimentation,’’ Anal Chem, 77, 2005, 5920–5924
    [錯誤! 連結無效。]J. B. Angell, S. C. Terry, and P. W. Barth, “Silicon micromechanical devices,’’ Silicon micromechanical devices Scientific American, 248, 1983, 44-55
    [5] D. R. Reyes, D. Lossifidis, P. A. Auroux and A. Manz, “Micro total analysis system Ι: Introduction, theory and technology,” Analytical Chemistry, 74, 2002, 2623-2636.
    [6] S. Kamisuki, M. Fujii, T. Takekoshi, C. Tezuka and M. Atobe, “A High Resolution, Electrostatically-Driven commercial Inkjet Head,” IEEE Micro Electro Mechanical Systems, 2000. The Thirteenth Annual International Conference, 2000, 793-798.
    [7] S. Kal, S. Das, D. K. Maurya, K. Biswas, A. R. Sankar and S. K. Lahiri, “A high-performance planar piezoresistive Accelerometer,” JMEMS, 9(1), 2000, 58-66
    [8] M. Abe, E. Shinohara, K. Hasegawa, S. Murata, and M. Esashi, “Trident-type Tuning Fork Silicon Gyroscope by The Phase Difference Detection,’’ IEEE Micro Electro Mechanical Systems, 2000. The Thirteenth Annual International Conference, 2000, 508-513
    [9] G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk micromachining of silicon,” Proceedings of the IEEE, 86(8), 1998 1536-1551
    [10] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proceedings of the IEEE, 86(8), 1998, 1552 -1574
    [11] H. Debéda, T. V. Freyhold, J. Mohr, U. Wallrabe, and J. Wengelink, “Development of miniaturized piezoelectric actuators for optical applications realized using LIGA technology,” JMEMS, 8(3), 1999, 258-263
    [12] D. J. Graves, “Powerful Tools for Genetic Analysis come of Age,” Trends Biotechnol, 17, 1999, 127-134
    [13] C. B. Epstein and R. A. Butow, “Microarray Technology - Enhanced Versatility, Persistent Challenge,” Current Opinion in Biotechnology, 11, 2000, 36-41.
    [14] G. H. W. Sanders and A. Manz, “Chip-based Microsystems for Genomic and Proteomic Analysis,” Trends in Analytical Chemistry, 19, 2000, 364-378.
    [15] N. H. Chiem and D. J. Harrison, “Microchip Systems for Immunoassay:an Integrated Immunoreactor with Electrophoretic Separation for Serum Theophylline Determination,” Clinical Chemistry, 44, 1998, 591-598
    [16] K. Sato, A. Hibara, M. Tokeshi, H. Hisamoto and T. Kitamori, “Microchip-based Chemical and Biochemical Analysis Systems,” Journal of Chromatography A, 987, 2003, 197-204
    [17] P. A. Auroux, D. Iossifidis, D. R. Reyes and A. Manz, “Micro total analysis systems II: analytical standard operations and applications,” Analytical Chemistry, 74, 2002, 2637-2652
    [18] T. Vilkner, D. Janasek and A. Manz, “Micro total analysis systems: recent developments,” Analytical Chemistry, 76, 2004, 3373-3385.
    [19] P. Grodzinski, R. Liu, J. Yang and M. D. Ward, “Microfluidic system integration in sample preparation chip-sets-a summary,” Proc. of the 26th Annual International Conference of the IEEE EMBS., San Francisco, USA, September 1-5, 2004, 2615-2618.
    [20] B. H. Weigl, R. L. Bardell, C. R. Cabrera, “Lab-on-a-chip for drug development,’’ Advanced Drug Delivery Reviews, 55(3), 2003, 349-377
    [21] P. Gascoyne, J. Satayavivad, M. Ruchirawat, “Microfluidic approaches to malaria detection,” Acta Tropica, 89(3), 2004, 357-369
    [22] J. W. Choi, K. W. Oh, J. H. Thomas, W. R. Heineman, H. B. Halsall, J. H. Nevin, A. J. Helmicki, H. T. Henderson and C. H. Ahn, ”An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities,” Lab Chip, 2, 2002, 27 – 30
    [23] C. H. Wang, Y. Y. Chen, C. S. Liao, T. M. Hsieh, C.H. Luo, J.J. Wu, H. H. Lee and G. B. Lee, “Micromachined Flow-through Polymerase Chain Reaction Chips Utilizing Multiple Membrane Activations,” Journal of Micromechanics and Microengineering, 17, 2007, 367-375
    [24] S. K. Sia, G. M. Whitesides, “Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies,” ELECTROPHORESIS, 24(21) , 2003, 3563 – 3576
    [25] K. J. Schwab, R. D. Leon and M. D. Sobsey, “Immunoaffinity concentration and purification of waterborneenteric viruses for detection by reverse transcriptase PCR,” Applied and Environmental Microbiology, 62(6), 1996, 2086-2094.
    [26] A. J. de Mello and N. Beard, “Dealing with 'real' samples: sample pre-treatment in microfluidic systems,” Lab on a Chip, 3, 2003, 11N-19N.
    [27] K. Y. Lien, C. J. Liu and G. B. Lee, “Magnetic-bead-based Microfluidic Systems for Detection of Genetic Diseases,” the 21st IEEE International Conference on Micro Electro Mechanical Systems (MEMS 08), Tucson, Arizona, USA, Jan, 2008, 13-17
    [28] M. B. Pepys and G. M. Hirschfield, “C-reactive protein: a critical update,” J. Clin. Invest. 111, 2003, 1805–1812
    [29] P. M. Ridker, M. Cushman, M. J. Stampfer, R. P. Tracy, C. H. Hennekens, “Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men,” N Engl J Med, 336,1997, 973-979
    [30] G. K. Sukhova, J. K. Williams, P. Libby, “Statins reduce inflammation in atheroma of nonhuman primates independent of effects on serum cholesterol,” Arterioscler Thromb Vasc Biol, 22, 2002, 1452-1458
    [31] E. P. Kartalov, J. F. Zhong, A. Scherer, S. R. Quake, C. R.Taylor, and W. F. Anderson, “High-throughput multi-antigen microfluidic fluorescence immunoassays,” BioTechniques, 40, 2006, 85-90
    [32] C. Tuerk, and L Gold, “Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA-polymerase,” Science, 249, 1990, 505–510
    [33]W. S. Tillett and T. Francis, “Serological reactions in pneumonia with a non-protein somatic fraction of Pneumococcus,” The Journal of Experimental Medicine, 52, Copyright, 1930, by The Rockefeller Institute for Medical Research New York, 561-571
    [34]C. M. MacLeod and O. T. Avery, “The occurrence during acute infections of a protein not normally present in the blood protein,’’ The Journal of Experimental Medicine, 73, Copyright, 1941, by The Rockefeller Institute for Medical Research New York, 191-200
    [35] D. Thompson, M. B. Pepys, S.P. Wood, “The physiological structure of human C-reactive protein and its complex with phosphocholine,” Structure Fold.Des., 7, 1999, 169-177
    [36] M. Pourcyrous, H. S. Bada, S. B. Korones, V. Baselski, S. P. Wong, “Significance of Serial C-Reactive Protein Responses in Neonatal Infection and Other Disorders,” PEDIATRICS, 92(3), 1993, 431-435
    [37] N. R. Tejani, T. Chonmaitree, D. K. Rassin, V. M, Howie, M. J. Owen, and A. S. Goldman, “Use of C-Reactive Protein in Differentiation Between Acute Bacterial and Viral Otitis Media,” PEDIATRICS, 95(5),1995, 664-669
    [38] D. M. Steel, A. S. Whitehead, “The major acute phase reactants: C-reative protein,serum amyloid P component and serum amyloid A protein,” Immunol Today, 15, 1994, 81-88
    [39] T. A. Pearson, G. A. Mensah, R. W. Alexander, J. L. Anderson, R. O. Cannon, III, M. Criqui, Y. Y. Fadl, S. P. Fortmann, Y. Hong, G. L. Myers, N. Rifai, S. C. Smith, K. Taubert, R. P. Tracy, F. Vinicor, “AHA/CDC Scientific Statement : Markers of Inflammation and Cardiovascular Disease- Application to Clinical and Public Health Practice A Statement for Healthcare Professionals From the Centers for Disease Control and Prevention and the American Heart Association,” Circulation, 107, 2003, 499-511
    [40] S. I. Rennard, R. Berg, G. R. Martin, J. M. Foidart and P. G. Robey, “Enzyme-linked immunoassay (ELISA) for connective tissue components”, Analytical Biochemistry, 104(1), 1980, 205-214
    [41] J. W. Choi, K. W. Oh, J. H. Thomas, W. R. Heineman, H. B. Halsall, J. H. Nevin, A. J. Helmicki, H. T. Henderson and C. H. Ahn, “An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities,” Lab on a Chip, 2, 2002, 27-30.
    [42] D. H. Bunka, P. G. Stockley, “Aptamers come of age - at last,” Nat Rev Microbiol., 4(8), 2006, 588-596
    [43] M. Mascini, “Aptamers and their applications,” Anal Bioanal Chem., 390, 2008, 987–988
    [44] M. H. F. Meyer, M. Hartmann, M. Keusgen, “SPR-based immunosensor for the CRP detection-A new method to detect a well known protein,” Biosensors and Bioelectronics, 21(10) , 2006, 1987-1990
    [45] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors & Actuators: B. Chemical, 54(1-2), 1999, 3-15
    [46] T.B. Ledue, N. Rifai, “High Sensitivity Immunoassays for C-Reactive Protein: Promises and Pitfalls,” Clin Chem Lab Med, 39(11), 2001, 1171–1176
    [47] A. Bini, S. Centi, S. Tombelli, M. Minunni, M. Mascini, “Development of an optical RNA-based aptasensor for C-reactive protein,” Anal Bioanal Chem, 390, 2008, 1077–1086
    [48] W. J. Spencer, W. T. Corbett, L. R. Dominguez and B. D. Shafer, “An Electronically Controlled Piezoelectric Insulin Pump and Valves,” IEEE Transactions on Sonics and Ultrasonics, 25 ,1978, 153-167.
    [49] N. T. Nguyen and T. Q. Truong, “A fully polymeric micropump with piezoelectric actuator,” Sensors Actuators B, 97, 2004, 137–143
    [50] M. Koch, N. Harris, A. Evans, N. White and A. Brunnschweiler, “A novel micromachined pump based on thick-film piezoelectric actuation,” Sensors Actuators A, 70, 1998, 98–103
    [51] F.C.M. van de Pol, H.T.G. van Lintel, M. Elwenspoek and J.H.J. Fluitman, “Thermopneumatic micropump based on microengineering techniques,’’ Sensors Actuators A, 21, 1990, 198–202
    [52] T. Y. Ng, T. Y. Jiang, H. Li, K. Y. Lam and J. N. Reddy, “A coupled field study on the non-linear dynamic characteristics of electrostatic micropump,” J. Sound Vib, 273, 2004, 989-1006
    [53] T. Bourouina, A. Bosseboeuf and J.Grandchamp, “Design and simulation of an electrostatic micropump for drug-delivery applications,” J. Micromech. Microeng, 7, 1997, 186–188
    [54] O. C. Jeong, and S. Konishi, “Fabrication and drive test of pneumatic PDMS micro pump,” Sensors and Actuators A, 135, 2007, 849-856
    [55] W. Zhang and C. H. Ahn, “A bidirectional magnetic micropump on a silicon wafer,’’ IEEE Solid-State Sensor and Actuator Workshop Technical Digest, 1996, 94–97
    [56] S. Santra, P. Hollaway and C. D. Batich, “Fabrication and testing of a magnetically actuated micropump,” Sensors Actuators B, 87, 2002, 358–364
    [57] M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, 288, 2000, 113-116
    [58] C. H. Wang, G. B. Lee, M. C. Li, Y. C. Wang, “Pneumatic micro-valves and micro-pumps for applications on multiple bio-sampling chips,” The 27th Conference on Theoretical and Applied Mechanics, Tainan , Taiwan, Dec. 12-13, 2003, 760-768.
    [59] C. W. Huang, S. B. Huang and G. B. Lee, “Pneumatic Micropumps with Serially Connected Actuation Chambers,” Journal of Micromechanics and Microengineering, 16, 2006 2265-2272
    [60] E. H. Yang, S. W. Han and S. S. Yang, “Fabrication and testing of a pair of passive bivalvular microvalves composed of p + silicon diaphragms,” Sensors Actuators A, 57, 1996, 75-78
    [61] B. K. Paul and T. Terhaar, “Comparison of two passive microvalve designs for microlamination architectures,” J. Micromech. Microeng., 10, 2000, 15-20
    [62] C. R. Neagu, J. G. E. Gardeniers, M. Elwenspoek and J. J. Kelly, “An electrochemical active valve,’’ Electrochim. Acta, 42, 1997, 3367–3313
    [63] A. Baldi, Y. Gu, P. E. Loftness, R. A. Siegel and B. Ziaie, “A hydrogel-actuated environmentally sensitive microvalve for active flow control,’’ J. Microelectromech. Syst, 12, 2003, 613–621
    [64] C. H. Wang and G. B. Lee, “Automatic bio-sampling chips integrated with micropumps and microvalves for multiple disease detection,” Biosensors and Bioelectronics, 21, 2005, 419-425
    [65] 劉政佑, “整合式電化學尿蛋白感測晶片系統,” 國立成功大學工程科學研究所碩士論文, 2007
    [66] G. H. Feng and E. S. Kim, “Micropump based on PZT unimorph and one-way parylene valves,” J. Micromech.Microeng., 14, 2004, 429–435
    [67] D. C. Duffy, O. J. A. Schueller, S. T. Brittain and G. M. Whitesides, “Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow,” J. Micromech. Microeng, 9, 1999, 211-217
    [68] W. H. Grover, R. H. C. Ivester, E. C. Jensen and R. A. Mathies, “Development and multiplexed control of latching pneumatic valves using microfluidic logical structures,” Lab Chip, 6, 2006, 623-631
    [69] J. Y. Baek, J. Y. Park, J. I. Ju, T. S. Lee and S. H. Lee, “A pneumatically controllable flexible and polymeric microfluidic valve fabricated via in situ development,” J. Micromech. Microeng, 15, 2005, 1015–1020
    [70]K. Hosokawa and R. Maeda, “A pneumatically-actuated three-way microvalve fabricated with polydimethylsiloxane using the membrane transfer technique,” J. Micromech. Microeng., 10, 2000, 415-420
    [71]D. S. Kim, S. W. Lee, T. H. Kwon and S. S. Lee, “A barrier embedded chaotic micromixer,” J. Micromech. Microeng., 14, 2004 798–805
    [72]N. Schwesinger, T. Frank and H. Wurmus, “A modular microfluid system with an integrated micromixer,” J. Micromech. Microeng., 6, 1996, 99–102
    [73] Y. Lin, G. J. Gerfen, D. L. Rousseau, S. R. Yeh, “Ultrafast Microfluidic Mixer and Freeze-Quenching Device,” Anal. Chem, 75, 2003, 5381-5386
    [74] V. Mengeaud, J. Josserand, and H. H. Girault, “Mixing processes in a zigzag microchannel: finite element simulations and optical study,’’ Anal. Chem., 74, 2002, 4279-4286
    [75] H. M. Xia, S. Y. M. Wan, C. Shu and Y. T. Chew, “Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers,” Lab Chip, 5, 2005, 748-755
    [76] S. Bohm, K. Greiner, and S. Schlautmann, “A rapid vortex micromixer for studying high-speed chemical reactions,” Technical Proc. Micro Total Analysis Systems, Micro TAS (2001), 1, 2001, 25–27
    [77] Z. Yang, H. Goto, M. Matsumoto, R. Maeda, “Active micromixer for microfluidic systems using lead-zirconate-titanate(PZT)-generated ultrasonic vibration,” ELECTROPHORESIS, 21(1), 1999, 116-119
    [78] J. H. Tsai and L. Lin, “Active microfluidic mixer and gas bubble filter driven by thermal bubble pump,” Sensors Actuators A, 97–98, 2002, 665–671
    [79] Z. Tang, S. Hong, D. Djukic, V. Modi, A. C. West, J. Yardley and R. M. Osgood, “Electrokinetic flow control for composition modulation in a microchannel,” J. Micromech. Microeng., 12, 2002, 870–877
    [80]H. Y. Tseng, C. H. Wang, W. Y. Lin, G. B. Lee, “Membrane-activated microfluidic rotary devices for pumping and mixing,” Biomed Microdevices, 9, 2007, 545–554
    [81]S.Y. Yang and G. B. Lee, “A NEW VORTEX-TYPE MICROMIXER,’’ Topic No. 1.3 Point of Aliquoting, Mixing & Pumping, Technical Proc. Micro Total Analysis Systems Micro TAS, 2008
    [82] A. J. Cocuzza, F. W. Hobbs, R. J. Zagursky, N. A. Straus, “Method for sequencing DNA using biotin-strepavidin conjugates to facilitate the purification of primer extension products,” US Patent 5,484,701, 1996
    [83] B. E. Slentz, N. A. Penner and F. E. Regnier, “Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization,” Journal of Chromatography A, 948, 2002, 225-233
    [84] C. H. Wang and G. B. Lee, “Pneumatically driven peristaltic micropumps utilizing serpentine-shape channels,” J. Micromech. Microeng, 16, 2006, 341-348

    下載圖示 校內:2010-08-22公開
    校外:2013-08-22公開
    QR CODE