| 研究生: |
陳玟翰 Chen, Wen-Han |
|---|---|
| 論文名稱: |
用mosapride作為大鼠肝臟CYP3A活性探針:應用於rilpivirine藥物動力學 Mosapride as a hepatic CYP3A probe in rats: application to rilpivirine pharmacokinetics |
| 指導教授: |
周辰熹
Chou, Chen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床藥學與藥物科技研究所 Institute of Clinical Pharmacy and Pharmaceutical sciences |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | rilpivirine 、mosapride 、細胞色素3A探針 、有限採樣法 |
| 外文關鍵詞: | rilpivirine, mosapride, CYP3A probe, limited sampling strategy |
| 相關次數: | 點閱:149 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究背景:
Rilpivirine是一種非核苷逆轉錄酶抑制劑,可用於治療初期的愛滋病毒感染者。Rilpivirine在人體主要是經由CYP3A4代謝來排除,因而誘導或抑制CYP3A的藥物可能影響rilpivirine的清除。由於CYP3A的活性在不同個體間有相當大的差異,造成相關藥品調整劑量上之困難,因此使用體內探針性試藥來評估酵素在不同個體內之代謝活性差異具有相當重要意義。Mosapride為新一代胃腸蠕動劑主要也是經由CYP3A代謝,先前研究發現以大白鼠動物模式靜脈注射及口服給予mosapride後其清除率與肝臟及腸道中CYP3A酵素含量成高度相關性,反映出mosapride做為CYP3A體內探針性試藥的可行性。
研究目的:
本研究將開發定量小體積血漿檢品中rilpivirine的分析方法,用以探討rilpivirine在大鼠體內之藥動學與交互作用,以及性荷爾蒙調節CYP3A活性對其受質藥動學之影響;並進一步討論CYP3A探針性試藥mosapride與受質rilpivirine由體內清除之相關性,同時驗證先前開發之mosapride有限單點採樣法的可行性。
研究方法:
首先以靜脈注射方式投予1-8 mg/kg的rilpivirine至大白鼠以研究其線性藥物動力學。在探討應用mosapride預測rilpivirine動力學的實驗中,大白鼠控制組不加處置或事先以抑制劑ketoconazole或誘導劑dexamethasone進行CYP3A活性的調節後,再同時由靜脈投予mosapride和rilpivirine。兩個藥物的血液檢體採樣收集至480分鐘,以分室模式估算其藥動參數。另外,對成熟公鼠和母鼠分別進行手術去勢和投予testosterone進行CYP3A活性調節,並探討兩藥物之動力學變化。
研究結果:
已成功開發一個靈敏的高效液相層析分析方法,並應用在定量小體積大鼠血漿中的rilpivirine。Rilpivirine在給藥劑量下呈線性藥動學。當給予持續輸注CYP3A抑制劑ketoconazole後,mosapride在大鼠體內之清除率顯著減低,然而rilpivirine之清除率則與控制組並無顯著差異;給予CYP3A誘導劑dexamethasone後,不論是rilpivirine或mosapride在大鼠體內之清除率皆增加。在去勢後的公鼠體內mosapride血中濃度明顯上升而rilpivirine血中濃度並無顯著變化。母鼠投予testosterone後,不論是rilpivirine或mosapride血中濃度皆下降。本實驗也再次確認mosapride 90分鐘單點血中濃度可以對其本身AUC有良好預測。Rilpivirine與mosapride兩者對於ketoconazole反應並不盡相同,可能是由於抑制類型與強度不同所導致;若僅分析控制組與誘導組可觀察到mosapride清除率與rilpivirine清除率有良好相關性(r=0.84, p<.0001)。另外,mosapride 90分鐘濃度點也可以對控制組與誘導組rilpivirine之清除率有良好預測。
研究結論:
以靜脈注射方式投予rilpivirine與mosapride後,兩者的清除率在控制組與誘導組呈現正相關。利用單點的血中濃度也可以對rilpivirine的控制組和誘導組清除率有相當程度的預測,因此對於mosapride作為大白鼠體內CYP3A活性探針性試藥的應用而言,提供了一個更方便並省時的評估方式。
Introduction:
Rilpivirine is a non-nucleoside reverse transcriptase inhibitor (NNRTI) of human immunodeficiency virus type-1 (HIV-1). It can be used in the treatment of naïve HIV-1 infected patients. The elimination of rilpivirine in man is mainly by metabolism. The major enzymes responsible for the metabolism of rilpivirine are CYP3A isozymes, thus drugs that induce or inhibit the CYP3A would change the clearance of rilpivirine. CYP3A is one of the most important CYP450 subfamilies expressed in the liver and small intestine with great variation. The use of CYP3A phenotyping probes in drug therapy is of great importance. Mosapride, a new prokinetic agent, is metabolized mainly by CYP3A enzymes. Previous studies showed that after intravenous and oral administration of mosapride, the hepatic and intestinal CYP3A contents correlate strongly with mosapride clearance in rats. And mosapride clearance can be used to assess hepatic CYP3A activity in rats.
Purpose:
The objectives of this study were to characterize the kinetics of a CYP3A substrate rilpivirine in rats after intravenous administration and to predict its exposure using a CYP3A probe mosapride. A new HPLC method for determination of rilpivirine in rat plasma was developed and applied to explore its kinetics.
Methods:
Rats received rilpivirine(1-8 mg/kg)intravenously in the dose-linearity groups. To investigate the applicability of mosapride as a CYP3A probe, rilpivirine and mosapride were administered simultaneously into the femoral vein of rats in the control groups. In the CYP3A modulation groups, rats received study drugs after pretreatment with ketoconazole(inhibition)or dexamethasone (induction). The plasma concentrations of rilpivirine and mosapride were followed for 480 min, and the kinetics parameters were estimated by compartmental analysis. In addition, surgical castration to the male adult rats and testosterone supplement to female adult rats were employed to further investigate the effect of sex hormone on the expression of CYP3A and rilpivirine pharmacokinetics.
Results:
A sensitive HPLC assay was developed and applied to quantify rilpivirine in small volume of rat plasma. Rilpivirine displayed linear kinetics in the dose range studied. In the presence of ketoconazole, clearance of mosapride decreased significantly, whereas that of rilpivirine remained unchanged. Induction with dexamethasone significantly altered the clearance of rilpivirine and mosapride. The plasma concentration of mosapride in male rats increased dramatically after surgical castration, however, the kinetics of rilpivirine remained unaltered. Testosterone supplement significantly decreased the systemic exposure of both drugs in female rats. Mosapride AUC can be well predicted by using a single point (90 min) of plasma concentration. The correlation between mosapride clearance and rilpivirine clearance were relatively good for all the study groups, and after pooling the constitutive control and induction groups together, the correlation coefficient was greater than 0.84 (p<.0001). With regards to limited sampling strategy, a relationship (R2 =0.71, p<.0001) was found between rilpivirine clearance and mosapride plasma concentration at 90 min.
Conclusion:
The pharmacokinetics of rilpivirine in rats following intravenous administration was linear. The strong correlation between the clearances of mosapride and rilpivirine supports the applicability of mosapride as an in vivo hepatic CYP3A probe. Mosapride concentration at 90 min after a single intravenous dose was useful to predict total body clearance of rilpivirine.
Aarons, L., J. W. Mandema and M. Danhof (1991). "A population analysis of the pharmacokinetics and pharmacodynamics of midazolam in the rat." J Pharmacokinet Biopharm 19(5): 485-496.
Anzenbacher, P. and E. Anzenbacherova (2001). "Cytochromes P450 and metabolism of xenobiotics." Cell Mol Life Sci 58(5-6): 737-747.
Aouri, M., A. Calmy, B. Hirschel, A. Telenti, T. Buclin, M. Cavassini, A. Rauch and L. A. Decosterd (2013). "A validated assay by liquid chromatography-tandem mass spectrometry for the simultaneous quantification of elvitegravir and rilpivirine in HIV positive patients." J Mass Spectrom 48(5): 616-625.
Bjornsson, T. D., J. T. Callaghan, H. J. Einolf, V. Fischer, L. Gan, S. Grimm, J. Kao, S. P. King, G. Miwa, L. Ni, G. Kumar, J. McLeod, R. S. Obach, S. Roberts, A. Roe, A. Shah, F. Snikeris, J. T. Sullivan, D. Tweedie, J. M. Vega, J. Walsh and S. A. Wrighton (2003). "The conduct of in vitro and in vivo drug-drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective." Drug Metab Dispos 31(7): 815-832.
Burugula, L., N. R. Pilli, A. Makula, D. S. Lodagala and R. Kandhagatla (2013). "Liquid chromatography-tandem mass spectrometric assay for the non-nucleoside reverse transcriptase inhibitor rilpivirine in human plasma." Biomed Chromatogr 27(2): 172-178.
Cotreau, M. M., L. L. von Moltke, M. C. Beinfeld and D. J. Greenblatt (2000). "Methodologies to study the induction of rat hepatic and intestinal cytochrome P450 3A at the mRNA, protein, and catalytic activity level." J Pharmacol Toxicol Methods 43(1): 41-54.
Davies, B. and T. Morris (1993). "Physiological parameters in laboratory animals and humans." Pharm Res 10(7): 1093-1095.
Else, L., V. Watson, J. Tjia, A. Hughes, M. Siccardi, S. Khoo and D. Back (2010). "Validation of a rapid and sensitive high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) assay for the simultaneous determination of existing and new antiretroviral compounds." J Chromatogr B Analyt Technol Biomed Life Sci 878(19): 1455-1465.
Floyd, M. D., G. Gervasini, A. L. Masica, G. Mayo, A. L. George, Jr., K. Bhat, R. B. Kim and G. R. Wilkinson (2003). "Genotype-phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women." Pharmacogenetics 13(10): 595-606.
Fuhr, U., A. Jetter and J. Kirchheiner (2007). "Appropriate phenotyping procedures for drug metabolizing enzymes and transporters in humans and their simultaneous use in the "cocktail" approach." Clin Pharmacol Ther 81(2): 270-283.
Guengerich, F. P. (2008). "Cytochrome p450 and chemical toxicology." Chem Res Toxicol 21(1): 70-83.
He, P., M. H. Court, D. J. Greenblatt and L. L. Von Moltke (2005). "Genotype-phenotype associations of cytochrome P450 3A4 and 3A5 polymorphism with midazolam clearance in vivo." Clin Pharmacol Ther 77(5): 373-387.
He, P., M. H. Court, D. J. Greenblatt and L. L. von Moltke (2006). "Factors influencing midazolam hydroxylation activity in human liver microsomes." Drug Metab Dispos 34(7): 1198-1207.
Hollenberg, P. F. (2002). "Characteristics and common properties of inhibitors, inducers, and activators of CYP enzymes." Drug Metab Rev 34(1-2): 17-35.
Hreiche, R., B. Megarbane, S. Pirnay, S. W. Borron, C. Monier, P. Risede, N. Milan, V. Descatoire, D. Pessayre and F. J. Baud (2006). "Dexamethasone hepatic induction in rats subsequently treated with high dose buprenorphine does not lead to respiratory depression." Toxicol Appl Pharmacol 217(3): 352-362.
Izumi, K., Y. Zheng, J. W. Hsu, C. Chang and H. Miyamoto (2013). "Androgen receptor signals regulate UDP-glucuronosyltransferases in the urinary bladder: a potential mechanism of androgen-induced bladder carcinogenesis." Mol Carcinog 52(2): 94-102.
Jan, Y.-H., V. Mishin, C. M. Busch and P. E. Thomas (2006). "Generation of specific antibodies and their use to characterize sex differences in four rat P450 3A enzymes following vehicle and pregnenolone 16[alpha]-carbonitrile treatment." Archives of Biochemistry and Biophysics 446(2): 101-110.
Johnson, T. N., M. S. Tanner and G. T. Tucker (2000). "A comparison of the ontogeny of enterocytic and hepatic cytochromes P450 3A in the rat." Biochem Pharmacol 60(11): 1601-1610.
Katoh, T., H. Saitoh, N. Ohno, M. Tateno, T. Nakamura, I. Dendo, S. Kobayashi and K. Nagasawa (2003). "Drug interaction between mosapride and erythromycin without electrocardiographic changes." Jpn Heart J 44(2): 225-234.
Larson, A. M. (2007). "Acetaminophen Hepatotoxicity." Clinics in Liver Disease 11(3): 525-548.
LeCluyse, E. L. (2001). "Pregnane X receptor: molecular basis for species differences in CYP3A induction by xenobiotics." Chem Biol Interact 134(3): 283-289.
Li, W., S. Zeng, L. S. Yu and Q. Zhou (2013). "Pharmacokinetic drug interaction profile of omeprazole with adverse consequences and clinical risk management." Ther Clin Risk Manag 9: 259-271.
Lin, J. H., M. Chiba, I. W. Chen, J. A. Nishime, F. A. deLuna, M. Yamazaki and Y. J. Lin (1999). "Effect of dexamethasone on the intestinal first-pass metabolism of indinavir in rats: evidence of cytochrome P-450 3A [correction of P-450 A] and p-glycoprotein induction." Drug Metab Dispos 27(10): 1187-1193.
Lowry, J. A., G. L. Kearns, S. M. Abdel-Rahman, A. N. Nafziger, I. S. Khan, A. D. Kashuba, E. G. Schuetz, J. S. Bertino, Jr., J. N. van den Anker and J. S. Leeder (2003). "Cisapride: a potential model substrate to assess cytochrome P4503A4 activity in vivo." Clin Pharmacol Ther 73(3): 209-222.
Lu, C. and A. P. Li (2010). "Enzyme Inhibition in Drug Discovery and Development: The Good and the Bad."
Mandlekar, S. V., A. V. Rose, G. Cornelius, B. Sleczka, C. Caporuscio, J. Wang and P. H. Marathe (2007). "Development of an in vivo rat screen model to predict pharmacokinetic interactions of CYP3A4 substrates." Xenobiotica 37(9): 923-942.
Martignoni, M., G. M. Groothuis and R. de Kanter (2006). "Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction." Expert Opin Drug Metab Toxicol 2(6): 875-894.
Matsumoto, S., K. Yoshida, A. Itogawa, M. Tagawa, T. Fujii, H. Miyazaki and Y. Sekine (1993). "Metabolism of [carbonyl-14C]mosapride citrate after a single oral administration in rats, dogs and monkeys." Arzneimittelforschung 43(10): 1095-1102.
Murakami, T., A. Sato, M. Inatani, H. Sakurai, R. Yumoto, J. Nagai and M. Takano (2004). "Effect of neonatal exposure of 17beta-estradiol and tamoxifen on hepatic CYP3A activity at developmental periods in rats." Drug Metab Pharmacokinet 19(2): 96-102.
Mushiroda, T., R. Douya, E. Takahara and O. Nagata (2000). "The involvement of flavin-containing monooxygenase but not CYP3A4 in metabolism of itopride hydrochloride, a gastroprokinetic agent: comparison with cisapride and mosapride citrate." Drug Metab Dispos 28(10): 1231-1237.
Nelson, D. R., L. Koymans, T. Kamataki, J. J. Stegeman, R. Feyereisen, D. J. Waxman, M. R. Waterman, O. Gotoh, M. J. Coon, R. W. Estabrook, I. C. Gunsalus and D. W. Nebert (1996). "P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature." Pharmacogenetics 6(1): 1-42.
Paine, M. F., H. L. Hart, S. S. Ludington, R. L. Haining, A. E. Rettie and D. C. Zeldin (2006). "The human intestinal cytochrome P450 "pie"." Drug Metab Dispos 34(5): 880-886.
Park, B. K., M. Pirmohamed, M. D. Tingle, S. Madden and N. R. Kitteringham (1994). "Bioactivation and bioinactivation of drugs and drug metabolites: Relevance to adverse drug reactions." Toxicol In Vitro 8(4): 613-621.
Pearce, R. E., R. R. Gotschall, G. L. Kearns and J. S. Leeder (2001). "Cytochrome P450 Involvement in the biotransformation of cisapride and racemic norcisapride in vitro: differential activity of individual human CYP3A isoforms." Drug Metab Dispos 29(12): 1548-1554.
Ribeiro, V. and M. C. Lechner (1992). "Cloning and characterization of a novel CYP3A1 allelic variant: Analysis of CYP3A1 and CYP3A2 sex-hormone-dependent expression reveals that the CYP3A2 gene is regulated by testosterone." Archives of Biochemistry and Biophysics 293(1): 147-152.
Sakashita, M., Y. Mizuki, T. Hashizume, T. Yamaguchi, H. Miyazaki and Y. Sekine (1993). "Pharmacokinetics of the gastrokinetic agent mosapride citrate after intravenous and oral administrations in rats." Arzneimittelforschung 43(8): 859-863.
Sharma, D., A. J. Lau, M. A. Sherman and T. K. H. Chang (2013). "Agonism of human pregnane X receptor by rilpivirine and etravirine: Comparison with first generation non-nucleoside reverse transcriptase inhibitors." Biochemical Pharmacology 85(11): 1700-1711.
Shibata, M., M. Takahashi, M. Yoshino, T. Kuwahara, T. Nomura, Y. Yokomaku and W. Sugiura (2013). "Development and application of a simple LC-MS method for the determination of plasma rilpivirine (TMC-278) concentrations." J Med Invest 60(1-2): 35-40.
Sivils, J. C., T. M. Ancrum and L. J. Bain (2013). "LOSS of Mrp1 alters detoxification enzyme expression in a tissue- and hormonal-status-specific manner." J Appl Toxicol 33(8): 766-773.
Streetman, D. S., J. S. Bertino, Jr. and A. N. Nafziger (2000). "Phenotyping of drug-metabolizing enzymes in adults: a review of in-vivo cytochrome P450 phenotyping probes." Pharmacogenetics 10(3): 187-216.
Tateishi, T., M. Watanabe, H. Nakura, M. Asoh, H. Shirai, Y. Mizorogi, S. Kobayashi, K. E. Thummel and G. R. Wilkinson (2001). "CYP3A activity in European American and Japanese men using midazolam as an in vivo probe." Clin Pharmacol Ther 69(5): 333-339.
Tsunoda, S. M., R. L. Velez, L. L. von Moltke and D. J. Greenblatt (1999). "Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an in vivo probe: effect of ketoconazole." Clin Pharmacol Ther 66(5): 461-471.
Wada, T., J. Gao and W. Xie (2009). "PXR and CAR in energy metabolism." Trends Endocrinol Metab 20(6): 273-279.
Waxman, D. and T. H. Chang (2005). Hormonal Regulation of Liver Cytochrome P450 Enzymes. Cytochrome P450. P. Ortiz de Montellano, Springer US: 347-376.
Weiss, J. and W. E. Haefeli (2013). "Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro." Int J Antimicrob Agents 41(5): 484-487.
Wienkers, L. C. and T. G. Heath (2005). "Predicting in vivo drug interactions from in vitro drug discovery data." Nat Rev Drug Discov 4(10): 825-833.
Wilkinson, G. R. (1996). "Cytochrome P4503A (CYP3A) metabolism: prediction of in vivo activity in humans." J Pharmacokinet Biopharm 24(5): 475-490.
Willson, T. M. and S. A. Kliewer (2002). "PXR, CAR and drug metabolism." Nat Rev Drug Discov 1(4): 259-266.
Yuan, R., S. Madani, X. X. Wei, K. Reynolds and S. M. Huang (2002). "Evaluation of cytochrome P450 probe substrates commonly used by the pharmaceutical industry to study in vitro drug interactions." Drug Metab Dispos 30(12): 1311-1319.
官玫仙 (2007). Cisapride作為大白鼠體內CYP3A活性探針性試藥之可行性.
張雅雯 (2008). "Mosapride作為大白鼠體內CYP3A活性探針性試藥之可行性." 國立成功大學臨床藥學所96級碩士論文.
魏敬云 (2009). "有限採樣法預測 CYP3A 探針藥物mosapride 在大鼠體內之濃度曲線下面積." 國立成功大學臨床藥學所97級碩士論文.
任沛瑄 (2010). 用mosapride作為大鼠肝臟CYP3A活性探針:與參考探針midazolam之比較. 國立成功大學臨床藥學所98級碩士論文.
陳慧瑾 (2012). 探討testosterone調控細胞色素3A1和3A2表現量之機制. 國立成功大學藥理學研究所100級碩士論文.
校內:2023-12-31公開