簡易檢索 / 詳目顯示

研究生: 鄭安晏
Cheng, An-Yen
論文名稱: 基於人體姿態識別的創客教育學習行為分析
Employing Human Pose Estimation to Detect Learning Behavior in Maker Education
指導教授: 黃悅民
Huang, Yueh-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 63
中文關鍵詞: 人體姿態估測技術行為辨識學習行為
外文關鍵詞: human pose estimation, action recognition, learning behavior
相關次數: 點閱:118下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今知識以飛快的速度更新、成長,環境更迭的速度更甚以往,生活中尚待解決的問題也較過去來得複雜。現今,學生必須從學校帶走的不僅有知識,具備多元能力與創新創意的想法亦是適應現在生活與面對未來挑戰的重要助力。108課綱以核心素養作為發展主軸,素養教育之特色恰與以培養解決問題能力與創新思維為特色的創客教育相符,又創客教育以跨學科為特色,使創客教育逐漸在STEAM教育社群間風行。而素養教育注重個別差異化的學習,故教師需給予學生較傳統教學方法更多的關注;然臺灣師生比較歐美各國高,須提供教師觀察學生行為之輔助方法,方能使學生皆能受到適當的關注。
    本研究之主要目的在於建置一適用於創客教育學生行為辨識之模型,並建構創客教育學習行為指標;再藉由視覺化工具製作報表,協助教師了解學生學習狀況。藉由人體姿態估測技術,從真實教學影像中獲取姿態資訊並辨識學生行為,再藉由視覺化工具,呈現學習行為出現次數與時間點。並以創客教育現場影像進行測試,了解本研究所建置之模型是否符合創客教育學習行為辨識之使用。最後探討學習行為與後測結果(學習參與度與學習失落量表、空間能力、創客活動內容相關知識、實際作品)的關聯性,提供教師給予學生指導之參考。

    In Taiwan, Syllabus 108 emphasized the importance of competencies. The characteristic of competencies education happens to be the same as maker education, which is known for developing problem-solving skills and creative thinking. Moreover, Interdisciplinary is also the feature of maker education; therefore, it becomes famous among STEM educational communities. It's worth mentioning that competencies education focused on individual differences in learning. Thus, teachers should pay more attention to students; it should provide the observational way or tools to assist teachers and ensure students can get appropriate concern. This study is about to build a behavior recognition model, which applies to maker education scenes. We also designed a set of learning behavior indicators in the maker learning activity. With using to data and building report though visualize tool, it can help the teachers to understand the learning situation of students. At first, we pose information by human pose estimation tool from the video recorded from the makerspace. Next, we build a report through the visual tool, display the times of learning behaviors and the time it happened. Then, we input a video captured from the makerspace as a test, figure out whether the recognition model is suited for maker educational scenes used or not. Finally, we figure out the relationship between learning behaviors and factors. We hope these can be references for teachers when they are guiding students.

    摘要 I Extended Abstract II 誌謝 VIII 表目錄 XI 圖目錄 XII 壹、 前言 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究問題 3 1.4 研究限制 4 貳、 文獻探討 5 2.1 創客教育 5 2.2 學習行為 7 2.2.1 學習行為 7 2.2.2 學習行為辨識 9 2.3 行為辨識 10 2.3.1 現有行為辨識系統 10 2.3.2 行為資料庫比較 12 2.3.3 人體姿態估算(human pose estimation) 14 參、 研究方法 17 3.1 系統流程 17 3.1.1 模型建置 17 3.1.2 影片記錄分析 19 3.2 行為指標 20 3.3 實驗設計 22 3.3.1 實驗對象 22 3.3.2 實驗內容 22 肆、 研究結果 30 4.1 行為辨識模型 30 4.2 視覺化報表 32 4.3 後測結果 40 伍、 討論 43 5.1 應用人體節點資訊建置創客學習行為辨識模型 43 5.2 創客活動學習行為 43 5.3 學習參與度與學習行為 44 5.4 齒輪知識、空間能力與學習行為 47 陸、 結論 51 6.1 結論 51 6.2 建議 52 參考文獻 54 附錄 60

    王惠英. (2018). 素養,是什麼?怎麼學? Retrieved from https://magazine.chinatimes.com/gfamily/20180503001394-300404
    李松霖. (2017). 創客教育融入課程對資訊類大專生學習成效之影響-以人機介面設計課程為例. 國立臺中科技大學, Available from Airiti AiritiLibrary database. (2017年)
    李香芬. (2001). 國小智能障礙學生不專注行為功能性評量與介入成效之研究. 國立嘉義大學特殊教育學系之碩士論文 (未出版).
    李彩蓮. (2012). 芬園國小101學年度第二學期第1次定期評量六年級自然科考試卷. Retrieved from http://question-bank.chc.edu.tw/list.php?pageID=2878
    建臺高中附設國中部. (2009). 建臺高中附設國中部舉辦九十八年度苗栗縣國小六年級基本學力模擬測驗 自然科能力檢定測驗試題. Retrieved from http://www.ctsh.mlc.edu.tw/~ctsh_j/e6test/exampaper/98nature.pdf
    柯杏樺. (2012). 以TASA資料庫分析國中小自然科五大學習目標的性別差異. 國立成功大學, Available from Airiti AiritiLibrary database. (2012年)
    高雄市立博愛國民小學. (2010). 高雄市立博愛國民小學99學年度第 2 學期六年級自然科期中定期考查. Retrieved from http://esrv.paps.kh.edu.tw/classpage/UploadDocument/14177_%E5%8D%9A%E6%84%9B--6%E8%87%AA%E7%84%B6.pdf
    教育部. (2019). 108學年度國民小學平均每班學生人數(班生數). Retrieved from https://stats.moe.gov.tw/result.aspx?qno=MwA4AA2
    黃展鵬. (2018). 創客教育應用於自然與生活科技教學之發展與挑戰.
    澎湖縣赤崁國小. (2015). 澎湖縣赤崁國小 104 學年度第二學期六年級期中評量自然科試題(範圍:1~2 單元) Retrieved from http://www.ckps.phc.edu.tw/104_ck/uploads/tad_uploader/tmp/78/104-2-1%20%E5%85%AD%E8%87%AA.pdf
    蔡宗河. (2016). 新北市板橋區海山國民小學 105學年度第二學期 自然與生活科技(南一版) 第一次定期考查試題 Retrieved from https://exam.naer.edu.tw/base/otc/testStoreFile/1001624595ca1feda7cb.pdf
    鄭孟芳, & 林素華. (2010). 國小高年級自然科學習風格、學習動機與學業成就相關研究. [Study of the Relation of 5(superscript th) and 6(superscript th) students' ScienceLearning Style, Motivation and Achievement]. 生物科學, 52(2), 39-56. doi:10.29981/cb.201012.0004
    親子天下. (2017). 108課綱系列|什麼是核心素養?跨越科目疆界、把知識用出來. Retrieved from https://flipedu.parenting.com.tw/article/3285
    Ainley, M. D. (1993). Styles of engagement with learning: Multidimensional assessment of their relationship with strategy use and school achievement. Journal of educational psychology, 85(3), 395.
    Ashwin, T., & Guddeti, R. M. R. (2019). Unobtrusive behavioral analysis of students in classroom environment using non-verbal cues. IEEE Access, 7, 150693-150709.
    Ausburn, L. J., & Brown, D. (2006). Learning strategy patterns and instructional preferences of career and technical education students. Journal of STEM Teacher Education, 43(4), 4.
    Bevan, B., Gutwill, J. P., Petrich, M., & Wilkinson, K. (2015). Learning through STEM‐rich tinkering: Findings from a jointly negotiated research project taken up in practice. Science Education, 99(1), 98-120.
    Blikstein, P. (2013). Digital fabrication and ‘making’in education: The democratization of invention. FabLabs: Of machines, makers and inventors, 4(1), 1-21.
    Blikstein, P. (2018). Maker movement in education: History and prospects. Handbook of Technology Education, 419-437.
    Caba Heilbron, F., Escorcia, V., Ghanem, B., & Carlos Niebles, J. (2015). Activitynet: A large-scale video benchmark for human activity understanding. Paper presented at the Proceedings of the ieee conference on computer vision and pattern recognition.
    Cao, Z., Simon, T., Wei, S.-E., & Sheikh, Y. (2017). Realtime multi-person 2d pose estimation using part affinity fields. Paper presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
    Carreira, J., Noland, E., Hillier, C., & Zisserman, A. (2019). A short note on the kinetics-700 human action dataset. arXiv preprint arXiv:1907.06987.
    Chang, K.-E., Chang, C.-T., Hou, H.-T., Sung, Y.-T., Chao, H.-L., & Lee, C.-M. (2014). Development and behavioral pattern analysis of a mobile guide system with augmented reality for painting appreciation instruction in an art museum. Computers & Education, 71, 185-197. doi:https://doi.org/10.1016/j.compedu.2013.09.022
    Chen, F. (2019). Multi-person Real-time Action Recognition Based-on Human Skeleton. Retrieved from https://github.com/felixchenfy/Realtime-Action-Recognition
    Chen, J. C., Huang, Y., Lin, K. Y., Chang, Y. S., Lin, H. C., Lin, C. Y., & Hsiao, H. S. (2020). Developing a hands‐on activity using virtual reality to help students learn by doing. Journal of Computer Assisted Learning, 36(1), 46-60.
    Chin, L. C. K., Eu, K. S., Tay, T. T., Teoh, C. Y., & Yap, K. M. (2019, 3-4 Oct. 2019). A Posture Recognition Model Dedicated for Differentiating between Proper and Improper Sitting Posture with Kinect Sensor. Paper presented at the 2019 IEEE International Symposium on Haptic, Audio and Visual Environments and Games (HAVE).
    Chou, P.-N. (2018). Skill development and knowledge acquisition cultivated by maker education: Evidence from Arduino-based educational robotics. EURASIA Journal of Mathematics, Science and Technology Education, 14(10), 1-15.
    CMU-Perceptual-Computing-Lab. (2017). Openpose. Retrieved from https://github.com/CMU-Perceptual-Computing-Lab/openpose
    Conti, G. J. (2009). Development of a user-friendly instrument for identifying the learning strategy preferences of adults. Teaching and Teacher Education, 25(6), 887-896. doi:https://doi.org/10.1016/j.tate.2009.02.024
    D'Mello, S., Dieterle, E., & Duckworth, A. (2017). Advanced, analytic, automated (AAA) measurement of engagement during learning. Educational Psychologist, 52(2), 104-123.
    D’Mello, S., Taylor, R., Davidson, K., & Graesser, A. (2008, 2008//). Self Versus Teacher Judgments of Learner Emotions During a Tutoring Session with AutoTutor. Paper presented at the Intelligent Tutoring Systems, Berlin, Heidelberg.
    Dougherty, D. (2012). The maker movement. Innovations: Technology, governance, globalization, 7(3), 11-14.
    Ekstrom, R. B. (1976). Kit of factor-referenced cognitive tests: Educational Testing Service.
    fdu_taoshiqian. (2018). OpenPose论文笔记《Realtime Multi-Person 2D Human Pose Estimation using Part Affinity Fields》. Retrieved from https://www.cnblogs.com/taoshiqian/p/9335525.html
    Franke, R. H., & Kaul, J. D. (1978). The Hawthorne experiments: First statistical interpretation. American sociological review, 623-643.
    Godhe, A.-L., Lilja, P., & Selwyn, N. (2019). Making sense of making: critical issues in the integration of maker education into schools. Technology, Pedagogy and Education, 28(3), 317-328.
    Gu, C., Sun, C., Ross, D. A., Vondrick, C., Pantofaru, C., Li, Y., . . . Sukthankar, R. (2018). Ava: A video dataset of spatio-temporally localized atomic visual actions. Paper presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
    Halverson, E. R., & Sheridan, K. (2014). The maker movement in education. Harvard educational review, 84(4), 495-504.
    Holbert, N. (2016). Leveraging cultural values and “ways of knowing” to increase diversity in maker activities. International journal of child-computer interaction, 9, 33-39.
    Honey, M., & Kanter, D. E. (2013). Design, make, play: Growing the next generation of STEM innovators: Routledge.
    Hou, H.-T. (2015). Integrating cluster and sequential analysis to explore learners’ flow and behavioral patterns in a simulation game with situated-learning context for science courses: A video-based process exploration. Computers in human behavior, 48, 424-435.
    Hsiao, H.-S., Chang, C.-S., Lin, C.-Y., Chang, C.-C., & Chen, J.-C. (2014). The influence of collaborative learning games within different devices on student’s learning performance and behaviours. Australasian Journal of Educational Technology, 30(6).
    Hsu, Y.-C., Baldwin, S., & Ching, Y.-H. (2017). Learning through Making and Maker Education. TechTrends, 61(6), 589-594. doi:10.1007/s11528-017-0172-6
    Hwang, W.-Y., Shadiev, R., Tseng, C.-W., & Huang, Y.-M. (2015). Exploring effects of multi-touch tabletop on collaborative fraction learning and the relationship of learning behavior and interaction with learning achievement. Journal of Educational Technology & Society, 18(4), 459-473.
    Kim, B.-H., Jung, M.-Y., & Kim, J. (2018). Development and Application of 3D-Hologram Maker Education Materials for High School Students in Korea. Advanced Science Letters, 24(3), 2114-2117.
    Kim., I. (2018). tf-pose-estimation. Retrieved from https://github.com/ildoonet/tf-pose-estimation
    Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., & Serre, T. (2011). HMDB: a large video database for human motion recognition. Paper presented at the 2011 International Conference on Computer Vision.
    Li, W., Jiang, F., & Shen, R. (2019). Sleep gesture detection in classroom monitor system. Paper presented at the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
    Lin, Q., Yin, Y., Tang, X., Hadad, R., & Zhai, X. (2020). Assessing learning in technology-rich maker activities: A systematic review of empirical research. Computers & Education, 157, 103944. doi:https://doi.org/10.1016/j.compedu.2020.103944
    Lin, Y.-C., Hsieh, Y.-H., Hou, H.-T., & Wang, S.-M. (2019). Exploring students’ learning and gaming performance as well as attention through a drill-based gaming experience for environmental education. Journal of Computers in Education, 6(3), 315-334.
    Liu, T., Chen, Z., & Wang, X. (2019). Automatic Instructional Pointing Gesture Recognition by Machine Learning in the Intelligent Learning Environment. Paper presented at the Proceedings of the 2019 4th International Conference on Distance Education and Learning.
    Ma, S., Cho, W., Quan, C., & Lee, S. (2016, 5-7 Oct. 2016). A sitting posture recognition system based on 3 axis accelerometer. Paper presented at the 2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).
    Martin, L. (2015). The promise of the maker movement for education. Journal of Pre-College Engineering Education Research (J-PEER), 5(1), 4.
    Martinez, S. L., & Stager, G. (2013). Invent to learn. Making, Tinkering, and Engineering in the Classroom. Torrance, Canada: Construting Modern Knowledge.
    Monfort, M., Andonian, A., Zhou, B., Ramakrishnan, K., Bargal, S. A., Yan, T., . . . Vondrick, C. (2019). Moments in time dataset: one million videos for event understanding. IEEE transactions on pattern analysis and machine intelligence, 42(2), 502-508.
    OECD. (2019). Education at a Glance 2019.
    OpenCV. (2019). Smart Classroom C++ Demo. Retrieved from https://github.com/opencv/open_model_zoo/tree/master/demos/smart_classroom_demo
    OpenMMLAB. (2019). MMSkeleton. Retrieved from https://github.com/open-mmlab/mmskeleton
    Parekh, P., & Gee, E. R. (2018). Zooming into a Tinkering Project: The Progression of Learning through Transitional Objects. Interdisciplinary Journal of Problem-Based Learning, 12(2).
    Peng, C. (2012). Self-regulated learning behavior of college students of science and their academic achievement. Physics procedia, 33, 1446-1450.
    Peppler, K., & Glosson, D. (2013). Stitching circuits: Learning about circuitry through e-textile materials. Journal of Science Education and Technology, 22(5), 751-763.
    Poppe, R. (2010). A survey on vision-based human action recognition. Image and Vision Computing, 28(6), 976-990. doi:https://doi.org/10.1016/j.imavis.2009.11.014
    Rathvon, N. W. (1990). The effects of encouragement on off-task behavior and academic productivity. Elementary School Guidance & Counseling, 24(3), 189-199.
    Renninger, K. A., & Bachrach, J. E. (2015). Studying Triggers for Interest and Engagement Using Observational Methods. Educational Psychologist, 50(1), 58-69. doi:10.1080/00461520.2014.999920
    Schlegel, R. J., Chu, S. L., Chen, K., Deuermeyer, E., Christy, A. G., & Quek, F. (2019). Making in the classroom: Longitudinal evidence of increases in self-efficacy and STEM possible selves over time. Computers & Education, 142, 103637.
    Schunk, D. H. (1984). Self‐efficacy perspective on achievement behavior. Educational Psychologist, 19(1), 48-58.
    Sheridan, K., Halverson, E. R., Litts, B., Brahms, L., Jacobs-Priebe, L., & Owens, T. (2014). Learning in the making: A comparative case study of three makerspaces. Harvard educational review, 84(4), 505-531.
    Skinner, E. A., Kindermann, T. A., & Furrer, C. J. (2009). A motivational perspective on engagement and disaffection: Conceptualization and assessment of children's behavioral and emotional participation in academic activities in the classroom. Educational and psychological measurement, 69(3), 493-525.
    Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4), 427-437. doi:https://doi.org/10.1016/j.ipm.2009.03.002
    Soomro, K., Zamir, A. R., & Shah, M. (2012). UCF101: A dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402.
    Sormunen, K., Juuti, K., & Lavonen, J. (2020). Maker-Centered Project-Based Learning in Inclusive Classes: Supporting Students’ Active Participation with Teacher-Directed Reflective Discussions. International Journal of Science and Mathematics Education, 18(4), 691-712. doi:10.1007/s10763-019-09998-9
    Sun, B., Zhao, K., Xiao, Y., He, J., Yu, L., Wu, Y., & Yan, H. (2019). BNU-LCSAD: A video database for classroom student action recognition. Paper presented at the Optoelectronic Imaging and Multimedia Technology VI.
    Sun, C., Xia, F., Wang, Y., Liu, Y., Qian, W., & Zhou, A. (2018). A deep learning model for automatic evaluation of academic engagement. Paper presented at the Proceedings of the Fifth Annual ACM Conference on Learning at Scale.
    Taber, T. A., Seltzer, A., Juane Heflin, L., & Alberto, P. A. (1999). Use of self-operated auditory prompts to decrease off-task behavior for a student with autism and moderate mental retardation. Focus on Autism and Other Developmental Disabilities, 14(3), 159-166.
    Townsend, J. T. (1971). Theoretical analysis of an alphabetic confusion matrix. Perception & Psychophysics, 9(1), 40-50.
    Van Schijndel, T. J., Franse, R. K., & Raijmakers, M. E. (2010). The Exploratory Behavior Scale: Assessing young visitors' hands‐on behavior in science museums. Science Education, 94(5), 794-809.
    wiki. (2020). F1 score. Retrieved from https://en.wikipedia.org/wiki/F1_score
    Xu, W., Huang, M., Amini, N., He, L., & Sarrafzadeh, M. (2013). eCushion: A Textile Pressure Sensor Array Design and Calibration for Sitting Posture Analysis. IEEE Sensors Journal, 13(10), 3926-3934. doi:10.1109/JSEN.2013.2259589
    Yen, C.-J., Konold, T. R., & McDermott, P. A. (2004). Does learning behavior augment cognitive ability as an indicator of academic achievement? Journal of School Psychology, 42(2), 157-169. doi:https://doi.org/10.1016/j.jsp.2003.12.001
    Zhang, Z., Li, Z., Liu, H., Cao, T., & Liu, S. (2020). Data-driven Online Learning Engagement Detection via Facial Expression and Mouse Behavior Recognition Technology. Journal of Educational Computing Research, 58(1), 63-86.
    Zheng, J., Xing, W., Zhu, G., Chen, G., Zhao, H., & Xie, C. (2020). Profiling self-regulation behaviors in STEM learning of engineering design. Computers & Education, 143, 103669.

    無法下載圖示 校內:2025-12-18公開
    校外:2025-12-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE