簡易檢索 / 詳目顯示

研究生: 蘇士賢
Sue, Shi-Xian
論文名稱: 具物理限制之樣條曲線加工路徑命令規劃與雷射切割應用
Machining Path Planning with Physical Constraints Based on Spline Curve and Its Application for Laser Cutting
指導教授: 彭兆仲
Peng, Chao-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 120
中文關鍵詞: 三次樣條曲線B樣條曲線NURBS軌跡規劃點雲優化
外文關鍵詞: cubic-spline, B-spline, NURBS, path planning, point cloud optimization
相關次數: 點閱:85下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 軌跡規劃經常應用於加工機、機器手臂等之機械設備上,軌跡規劃的好壞會反應至運動的流暢性,進而影響加工結果;良好的軌跡規劃有助於加工成品外觀,並使控制精度近一步提升,尤以在高速加工應用中,軌跡規劃更加顯得格外重要。軌跡規劃之離散點來自CAD/CAM,過多之離散點導致冗長之軌跡規劃時間及加工時間,因此基於加工精度將點雲進行優化;軌跡規劃在經過轉角時,具有過大之輪廓誤差,本研究為了使規劃結果符合預期之加工外型,提出分群策略。另外,軌跡規劃必須滿足加工機構之物理極限,避免造成加工之震動,影響加工品質,因此必須將物理限制整合於軌跡演算法中。本論文提出cubic-spline、B-spline及NURBS之軌跡規劃方法,其中為了滿足加工精度,透過NURBS規劃調整權重達成加工精度限制,且具有良好之運動行為。最後透過雷射切割之實驗,驗證軌跡規劃之可行性,並討論軌跡規劃演算法對於加工結果之影響。基於本論文提出之研究方法,使用者給予物理系統極限、加工精度、曲線種類等參數,自動完成軌跡規劃演算法;此演算法透過點雲之前處理及規劃方法,提升加工速度並使加工速度穩定,並考慮加工速度與雷射功率能量匹配,達到加工速度穩定且切割能量均勻之加工結果。

    Path planning is extensively applying to machinery equipment, such as robot arm, processing machining, etc. Path planning affects fluency of motion and machining quality. An outstanding path planning improve surface of work-piece and make controller track command easily. Evidently, high quality products rely on sophisticated machining processes and path planning is definitely one of the key techniques. Sequential discrete points are obtained from CAD/CAM, which are used to interpolate with path planning method. However, great amount of point leads to redundant machining time and path planning time. Deviation of planning path is larger when pass through corner, the velocity and acceleration should decrease as passing corner. To guarantee machining continuities on motion profiles, enhance machining precision as well as reduce machining time, a novel point reduction and segmentation strategy is proposed. The interpolated method is introduced in this paper, which includes cubic-spline, B-spline and NURBS. For satisfying machining tolerance, the weight of NURBS can be modified to guarantee tolerance. The generated path can be used in physical system, the kinematics constraint should be taken into account. In this paper, an automatic path- planning algorithm is proposed, which reduce computation effort and raise machining velocity. The machining tolerance is satisfied with NURBS only, but computation effort of NURBS is more than the other spline curve. Finally, the experiment verify that the proposed method can be applied to laser machining application.

    中文摘要 I ABSTRACT II 誌謝 IX 圖目錄 XII 表目錄 XVI 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 1.3 本文架構 2 第2章 加工路徑規劃 3 2.1 三次樣條曲線CUBIC-SPLINE CURVE 3 2.2 B樣條曲線B-SPLINE 5 2.3 非均勻有理B樣條曲線 9 第3章 基於曲線規劃之端點修正策略 12 3.1 CUBIC SPLINE 12 3.2 B-SPLINE 15 3.3 NURBS 16 第4章 加工路徑優化 18 4.1 基於加工精度之點雲優化 18 4.2 點雲分群與轉角降速 21 4.3 分群修正 22 4.4 NURBS 優化 24 4.5 具加工物理限制之最佳化 26 第5章 路徑規劃模擬結果與實驗 32 5.1 硬體架構 32 5.2 雷射系統鑑別 33 5.3 分群及減點效益 36 5.4 高速加工模擬與結果 39 5.5 低速加工結果 49 5.6 木板切割 50 第6章 結論與未來研究方向 50 6.1 結論 50 6.2 未來研究方向 50 參考文獻 51 附錄A. 減點與分群模擬比較 52 附錄A.1 手機模型1 53 附錄A.2 手機模型2 54 附錄A.3 手機模型3 55 附錄A.4 手機模型4 56 附錄A.5 手機模型5 57 附錄B. 高速加工模擬規劃結果 58 附錄B.1 手機模型1 58 附錄B.2 手機模型2 59 附錄B.3 手機模型3 61 附錄B.4 手機模型4 62 附錄B.5 手機模型5 64 附錄C. 高速加工結果 66 附錄C.1 手機模型1 66 附錄C.2 手機模型2 69 附錄C.3 手機模型3 72 附錄C.4 手機模型4 75 附錄C.5 手機模型5 78 附錄D. 低速加工模擬規劃結果 81 附錄D.1 手機模型1 81 附錄D.2 手機模型2 82 附錄D.3 手機模型3 84 附錄D.4 手機模型4 85 附錄D.5 手機模型5 87 附錄D.6 標準圓 88 附錄E. 低速加工結果 90 附錄E.1 手機模型1 90 附錄E.2 手機模型2 93 附錄E.3 手機模型3 96 附錄E.4 手機模型4 99 附錄E.5 手機模型5 102 附錄E.6 標準圓 105 附錄F. 木板加工之模擬規劃結果 108 附錄F.1 手機模型1 108 附錄F.2 手機模型2 109 附錄F.3 手機模型3 111 附錄F.4 手機模型4 112 附錄F.5 手機模型5 114 附錄F.6 標準圓 115 附錄G. 木板加工結果 117 附錄G.1 手機模型1 117 附錄G.2 手機模型2 117 附錄G.3 手機模型3 118 附錄G.4 手機模型4 118 附錄G.5 手機模型5 119 附錄G.6 標準圓 119 附錄H. 模擬與加工影片 120

    [1] S. Chapra, Applied numerical methods with MATLAB for engineers and scientists, New York, NY: McGraw-Hill, 2012, pp. 438-442.
    [2] C. Lin; P. Chang; J.Y.S. Luh; Formulation and optimization of cubic polynomial joint trajectories for industrial robots, IEEE transactions on automatic control, vol 28, 1983, pp 1066-1074.
    [3] S. Thompson and R. Patel, "Formulation of Joint Trajectories for Industrial Robots Using B-Splines", IEEE Transactions on Industrial Electronics, vol. -34, no. 2, pp. 192-199, 1987.
    [4] L. Piegl and W. Tiller, The NURBS book, 2nd ed. Berlin: Springer, 1997
    [5] A. Gasparetto and V. Zanotto, "A technique for time-jerk optimal planning of robot trajectories", Robotics and Computer-Integrated Manufacturing, vol. 24, no. 3, pp. 415-426, 2008.
    [6] M. Tsai, H. Nien and H. Yau, "Development of a real-time look-ahead interpolation methodology with spline-fitting technique for high-speed machining", The International Journal of Advanced Manufacturing Technology, vol. 47, no. 5-8, pp. 621-638, 2009.
    [7] S. Kucuk, "Optimal trajectory generation algorithm for serial and parallel manipulators", Robotics and Computer-Integrated Manufacturing, vol. 48, pp. 219-232, 2017.
    [8] S. Jackson and R. Mittal, "Automatic generation of 2-axis laser-cutter NC machine program and path planning from CAD", Computers in Industry, vol. 21, no. 2, pp. 223-231, 1993.
    [9] T.T.N. Nguyen, S. Kurtenbach, M. Hüsing and B. Corves, "Evaluating the knot vector to synthesize the cam", Computational Kinematics, pp. 209-216,2017
    [10] J. Davim, C. Oliveira, N. Barricas and M. Conceição, "Evaluation of cutting quality of PMMA using CO2 lasers", The International Journal of Advanced Manufacturing Technology, vol. 35, no. 9-10, pp. 875-879, 2006.
    [11] P. Sheng and L. Cai, "Model-based path planning for laser cutting of curved trajectories", International Journal of Machine Tools and Manufacture, vol. 36, no. 6, pp. 739-754, 1996.
    [12] J. Huang, X. Du and L. Zhu, "Real-time local smoothing for five-axis linear toolpath considering smoothing error constraints", International Journal of Machine Tools and Manufacture, vol. 124, pp. 67-79, 2018.
    [13] W. Zhong, X. Luo, W. Chang, F. Ding and Y. Cai, "A real-time interpolator for parametric curves", International Journal of Machine Tools and Manufacture, vol. 125, pp. 133-145, 2018.
    [14] M. Cheng, M. Tsai and J. Kuo, "Real-time NURBS command generators for CNC servo controllers", International Journal of Machine Tools and Manufacture, vol. 42, no. 7, pp. 801-813, 2002.
    [15] S. Yeh and P. Hsu, "Adaptive-feedrate interpolation for parametric curves with a confined chord error", Computer-Aided Design, vol. 34, no. 3, pp. 229-237, 2002.
    [16] M. Tsai, H. Nien and H. Yau, "Development of an integrated look-ahead dynamics-based NURBS interpolator for high precision machinery", Computer-Aided Design, vol. 40, no. 5, pp. 554-566, 2008.
    [17] M. Tsai, C. Cheng and M. Cheng, "A real-time NURBS surface interpolator for precision three-axis CNC machining", International Journal of Machine Tools and Manufacture, vol. 43, no. 12, pp. 1217-1227, 2003

    無法下載圖示 校內:2021-07-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE