簡易檢索 / 詳目顯示

研究生: 謝予強
Hsieh, Yu-Chiang
論文名稱: 波紋拉伸雙層石墨烯之異常負磁阻研究
Anomalous negative magnetoresistance in corrugated bilayer graphene
指導教授: 陳則銘
Chen, Tse-Ming
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 29
中文關鍵詞: 雙層石墨烯磁阻形變
外文關鍵詞: bilayer graphene, straintronics, magnetoresistance
相關次數: 點閱:94下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 形變石墨烯造成高斯場的出現在近幾年是一項非常熱門的題目,也是開啟形變電子學(straintronics)研究領域的主要原因。近期的研究指出,利用掃描穿隧能譜偵測到在石墨烯奈米突起形變點上有非常大的偽磁場,另一方面科學家們也想出各種方式來形變石墨烯來改變其傳輸性質,例如:成長石墨烯在特殊的基板上、熱膨脹錯位。但不能控制的微米尺度形變在裝置(device)應用端始終是一項挑戰,為此我們開發了一項技術可以在雙層的石墨烯上創造一個局部的波紋拉伸形變,令我們可以同時量測平坦及波紋形變的區域,而有趣的是我們發現水平磁場會引發異常負磁阻且只發生在波紋形變區域;此外在給予垂直磁場時,不尋常的量子霍爾效應也出現在波紋形變區域,我們認為這個現象可能跟異常負磁阻有所關連。最後我們推測負磁阻現象可能來自於雙層石墨烯的晶格結構被波紋拉伸形變後所造成不尋常的層間耦合及干擾。

    Strain induced gauge field in graphene systems has been extensively studied leading to usher in a new research field named “straintronics”. In previous studies, scanning tunneling spectroscopic measurement observed a huge pseudo magnetic field at strain induced graphene nanobubbles. On the other hand, scientists induce strain in graphene by growing on particular substrate or using thermal mismatch to change transport properties. But, uncontrollable microscale strains are still challenging for device application. Here, we have developed a technique to locally create the corrugating deformation on bilayer graphene, allowing us to investigate flat and corrugation regime simultaneously. Interestingly, the anomalous negative magnetoresistance (NMR) was extracted only in corrugation regime when the in-plane magnetic field (B_ǁ) was applied. Additionally, the unconventional quantum Hall effect which may associate with anomalous NMR occurred in corrugation regime with an out-plane magnetic field (B_⊥). In conclusion, the anomalous NMR may attribute to the unconventional interlayer coupling and interference due to deformation of the crystal lattice structure.

    Introduction 1 Basic electrical properties in bilayer graphene 3 2.1 Crystal structure 3 2.2 Tight-bonding model 3 2.3 Interlayer coupling in bilayer graphene 6 2.4 Quantum Hall effect (QHE) 7 2.5 Weak localization 8 2.6 Snake effect 9 Device manufacture and method 10 3.1 Exfoliation process 10 3.1.1 Production of bilayer graphene 10 3.1.2 Production of thin hexagonal boron nitride 11 3.2 Dry transfer technique 12 3.3 Corrugated G/hBN heterostructure device 14 3.3.1 Create artificial corrugation region on hBN 14 3.3.2 Place bilayer graphene on corrugated hBN 15 3.4 Crossroad Hall bar and contact fabrication 15 3.5 Thermal annealing process 15 Measurement results 16 4.1 Introduction of corrugated BG device 16 4.2 Charge neutral point (E1) 18 4.3 Anomalous negative magnetic resistance (NMR) 21 4.4 Quantum Hall effect (QHE) and weak localization (WL) 25 Conclusion 28 Bibliography 29

    [1] N. Levy, S. Burke, K. Meaker, M. Panlasigui, A. Zettl, F. Guinea, et al., "Strain-induced pseudo–magnetic fields greater than 300 tesla in graphene nanobubbles," Science, vol. 329, pp. 544-547, 2010.
    [2] B. Amorim, A. Cortijo, F. De Juan, A. Grushin, F. Guinea, A. Gutiérrez-Rubio, et al., "Novel effects of strains in graphene and other two dimensional materials," Physics Reports, vol. 617, pp. 1-54, 2016.
    [3] F. Guinea, M. Katsnelson, and A. Geim, "Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering," Nature Physics, vol. 6, p. 30, 2010.
    [4] M. Settnes, S. R. Power, and A.-P. Jauho, "Pseudomagnetic fields and triaxial strain in graphene," Physical Review B, vol. 93, p. 035456, 2016.
    [5] S. Zhu, J. A. Stroscio, and T. Li, "Programmable extreme pseudomagnetic fields in graphene by a uniaxial stretch," Physical review letters, vol. 115, p. 245501, 2015.
    [6] E. McCann and M. Koshino, "The electronic properties of bilayer graphene," Reports on Progress in Physics, vol. 76, p. 056503, 2013.
    [7] F. Pizzocchero, L. Gammelgaard, B. S. Jessen, J. M. Caridad, L. Wang, J. Hone, et al., "The hot pick-up technique for batch assembly of van der Waals heterostructures," Nature communications, vol. 7, p. 11894, 2016.
    [8] V. I. Fal'Ko, "Electronic properties and the quantum Hall effect in bilayer graphene," Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 366, pp. 205-219, 2008.
    [9] P. Rickhaus, P. Makk, M.-H. Liu, E. Tóvári, M. Weiss, R. Maurand, et al., "Snake trajectories in ultraclean graphene p–n junctions," Nature communications, vol. 6, p. 6470, 2015.
    [10] A. Nogaret, "Electron dynamics in inhomogeneous magnetic fields," Journal of Physics: Condensed Matter, vol. 22, p. 253201, 2010.
    [11] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," science, vol. 306, pp. 666-669, 2004.
    [12] K. Novoselov, A. Mishchenko, A. Carvalho, and A. C. Neto, "2D materials and van der Waals heterostructures," Science, vol. 353, p. aac9439, 2016.
    [13] X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, et al., "Toward clean and crackless transfer of graphene," ACS nano, vol. 5, pp. 9144-9153, 2011.
    [14] M. Titov and M. Katsnelson, "Metal-insulator transition in graphene on boron nitride," Physical review letters, vol. 113, p. 096801, 2014.

    無法下載圖示 校內:2023-06-22公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE