| 研究生: |
許祐凌 Hsu, Yu-Ling |
|---|---|
| 論文名稱: |
利用氮化矽氮化鎵多緩衝層於氮化鎵光檢測器之研究 The study of GaN photodetectors with multi-pair SiN/GaN buffer layer |
| 指導教授: |
許進恭
Sheu, Jinn-Kong 蘇炎坤 Su, Yan-Kuin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 氮化矽氮化鎵多緩衝層 、蕭基二極體 、金半金光檢測器 |
| 外文關鍵詞: | MSM photodetector, Schottky diode, multi-pair SiN/GaN buffer layer |
| 相關次數: | 點閱:87 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們利用有機化學氣相沉積系統成長出具有氮化矽氮化鎵多緩衝層的三五族氮化物材料。為了得到高品質的磊晶材料,成長氮化矽的參數,例如成長時所通入的二矽乙烷、成長溫度,以及成長時間等都已經被最佳化。同時我們利用一些分析設備來對我們所成長出來的磊晶品質上的分析,而分析的設備包含霍耳量測、光致發光分析、高解析度X 光繞射儀、穿透率分析儀、原子力顯微鏡,以及掃描式電子顯微鏡。具有這種氮化矽氮化鎵多緩衝層的金半金光檢測器和蕭基二極體最後被製造出來並對它的元件特性做分析。
跟傳統的低溫緩衝層比較起來,這種利用氮化矽氮化鎵雙緩衝層的磊晶材料確實有達到改善磊晶品質的目標。而磊晶品質改善前後由以下幾點說明:電子遷移率由 213 增加到 525 cm2/V-s、電子濃度由 -7.68 x 1017 降到 -2.58 x 1017 cm-3、X 光的半高寬由 425.3 降到 371.5 arcsec (102 面),以及光致發光中之黃光波段與主波段的比值由 0.51 下降到0.35,再加上利用原子力顯微鏡和掃描式電子顯微鏡表面之比較,可發現確實加上多層氮化矽可達到提升磊晶品質的目標,並可有效降低材料本身的一些差排和缺陷等造成磊晶品質不好的因素。
最後我們比較具有氮化矽氮化鎵多緩衝層和一般傳統的低溫緩衝層的氮化鎵材料所製造出來的金半金光檢測器和蕭基二極體元件的特性。我們可以發現具有氮化矽氮化鎵多緩衝層的元件它有比較低的暗電流、比較大的光暗電流比、比較大的紫外光對可見光比和較佳的檢測率。而且經由計算出來樣本的蕭基能障在具有氮化矽氮化鎵雙緩衝層還是比傳統的低溫緩衝層還要大。此外金半金光檢測器由於加入氮化矽改善磊晶品質的關係,因此量測出來在雜訊上的表現比傳統緩衝層還好來得好。在論文中我們也討論了一些漏電流的傳導機制,並且發現加入氮化矽後有抑制漏電流的效果,因此使得元件的特性上得到改善。
In this thesis, the nitride-based III-V alloys with multi-pair SiN/GaN buffer layer had been grown and characterized by metal organic chemical vapor deposition system (MOCVD). In order to realize high quality epitaxial layer, the growth conditions, such as Si2H6 flow, SiN growth temperature and growth time had been optimized. Several analysis techniques, such as Hall measurement, photoluminescence (PL), X-ray diffraction (XRD), transparency analysis instrument, atomic force microscopy (AFM), and scanning electron microscopy (SEM) had also been performed to characterize the crystal quality of these epitaxial layers. Metal-semiconductor-metal (MSM) photodetectors and the Schottky barrier diodes were then fabricated and characterized with novel multi-pair SiN/GaN buffer layer.
Compare to the traditional low temperature (LT) GaN buffer layer, the epitaxial film with multi-pair SiN/GaN buffer layer had greatly improved. According to the Hall measurement, the electron mobility were increased from 213 to 525 cm2/V-s, and the carrier concentration were decreased from -7.68 x 1017 to -2.58 x 1017 cm-3. The FWHM in XRD (102) and the PL ratios of IYL/IBE were both decreased from 425.3 to 371.5 arcsec and 0.51 to 0.35, respectively. Furthermore, AFM and SEM images also showed that the dislocations and defects could be dramatically reduced by inserting multi-pair SiN/GaN buffer layer.
Finally, the MSM photodetectors and Schottky diode were fabricated by using GaN materials with compared multi-pair SiN/GaN buffer layer and LT GaN buffer layer. The related study of devices performance had also been finished. It could be found that the samples with multi-pair SiN/GaN buffer layer had a lower dark current, larger photo current to dark current contrast ratio, larger UV-to-Visible rejection ratio, and better detectivity. The Schottky barrier height of the devices with multi-pair SiN/GaN buffer layer calculated by Schottky diode was larger than that with LT GaN buffer layer. Moreover, the noise properties of fabricated MSM photodetectors with multi-pair SiN/GaN buffer layer were lower than that with LT GaN buffer layer. This could be also attributed to that inserting multi-pair SiN/GaN buffer layer would increase the epitaxial quality and improve the devices performance. The leakage transport mechanism had also been discussed. The reduction of dislocations and defects in the surface would avoid the leakage current caused from traps assisted tunneling.
[1] H. Morkoe, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies”, J. Appl. Phys, Vol. 76, 1363 (1994)
[2] F. Ren, C. R. Abernathy, J. M. Van Hove, P. P. Chow, R. Hickman, J. J. Klaasen, R. F. Kopf, H. Cho, K. B. Jung, J. R. La Roche, R. G. Wilson, J. Han, R. J. Shul, A. G. Baca, and S. J. Pearton, “300°C GaN/AlGaN Heterojunction Bipolar Transistor”, MRS Internet J. Nitride Semicond, Res. Vol. 3, 41 (1998)
[3] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and K. T. Ilson, “Metal semiconductor field effect transistor based on single crystal GaN”, Appl. Phys. Lett, Vol. 62, 1786 (1993)
[4] M. A. Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm, and M. S. Shur, “Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor”, Appl. Phys. Lett. Vol. 65, 1121 (1994)
[5] M. A. Khan, Q. Chen, M. S. Shur, B. T. Dermott, J. A. Higgins, J. Burm, W. Schaff, and L. F. Eastman, ”Short-channel GaN/AIGaN doped channel heterostructure field effect transistors with 36.1 cutoff freq”, Electron. Lett, Vol. 32, 357 (1996)
[6] E. Fred Schubert, “Light-Emitting Diodes”, (Cambridge University Press, 2003)
[7] S. Nakamura, S. Pearton, and G. Fasol, “The Blue Laser Diode”, (Springer Heidelberg,c2000)
[8] Bernard Gil, “Group III nitride semiconductor compounds”, (Oxford University Press, 1998)
[9] M. Sasaki, S. Takeshita, M. Sugiura, N. Sudo, Y. Miyake, Y. Furusawa, and T. Sakata, "Ground-based observation of biologically active solar ultraviolet-B irradiance at 35°N latitude in Japan," J. Geomagn. Geoelectr. 45, 473 (1993)
[10] B. Tabbert, C. Hicks, E. Bartley, H. Wu, R. Metzler, and A. O. Goushcha, “Ultra-thin multi-element Si pin photodiode arrays for medical imaging applications”, SPIE. Vol. 5726, 10 (2005)
[11] Y. Z. Chiou, Y. K. Su, S. J. Chang, J. Gong, Y. C. Lin, S. H. Liu, and C.S. Chang, “High detectivity InGaN-GaN multiquantum well p-n junction photodiodes”, IEEE Journal of Quantum Electronics, Vol. 39, 681 (2003)
[12] S. S. Liu, P. W. Li, W. J. Lin, “Improvements of AlGaN/GaN p-i-n UV sensors with graded AlGaN layer for the UV-B (280-320nm) detection”, Materials Science and Engineering, B 122, 196-200 (2005)
[13] Jun Ohsawa, Takahiro Kozawa, Osamu Ishiguro, and Hiroshi Itoh, “Different Bias-Voltage Dependences of Photocurrent in Pt/InGaN/GaN and Pt/GaN Schottky Photodetectors on Sapphire”, Jpn. J. Appl. Phys, Vol. 45, L435 (2006)
[14] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Current transport mechanisms in GaN-based metal–semiconductor–metal photodetectors”, Appl. Phys. Lett, Vol. 72, 542 (1998)
[15] W. A. Melton, and J. I. Pankove, “GaN growth on sapphire”, J. Cryst. Growth, Vol. 178, 168 (1997)
[16] T. Kachi, K. Tomita, K. Itoh, and H. Tadano, “A new buffer layer for high quality GaN growth by metalorganic vapor phase epitaxy”, Appl. Phys. Lett, Vol 72, 704 (1998)
[17] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate”, Appl. Phys. Lett, Vol. 72, 211 (1998)
[18] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo, and T. Taguchi, “High Output Power InGaN Ultraviolet Light-Emitting Diodes Fabricated on Patterned Substrates Using Metalorganic Vapor Phase Epitaxy”, Phys. Stat. Sol, (a) 188, No. 1, 121 (2001)
[19] Y. B. Lee, T. Wang, Y. H. Liu, J. P. Ao, Y. Izumi, Y. Lacroix, H. D. Li, J. Bai, Y. Naoi, and S. Sakai, “High-Performance 348 nm AlGaN/GaN-Based Ultraviolet-Light-Emitting Diode with a SiN Buffer Layer”, Jpn. J. Appl. Phys, Vol . 41, 4450 (2002)
[20] P. C. Tsai, Ricky W. Chuang, and Y. K. Su, “Lifetime Tests and Junction-Temperature Measurement of InGaN Light-Emitting Diodes Using Patterned Sapphire Substrates”, IEEE J. lightwave. Technol.Vol. 25, 591 (2007)
[21] T. Wang, K. B. Lee, J. Bai, P. J. Parbrook, R. J. Airey, Q. Wang, G. Hill, F. Ranalli, and A. G. Cullis, “Greatly improved performance of 340 nm light emitting diodes using a very thin GaN interlayer on a high temperature AlN buffer layer”, Appl. Phys. Lett., Vol. 89, 081126 (2006).
[22] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, (Clarendon Press, Oxford, 1998)
[23] S. M. Sze, Semiconductor Device Physics and Technology, 160 (1985)
[24] S. M. Sze, Semiconductor Device Physics and Technology, 278 (1985)
[25] S. M. Sze, D. J. Coleman, JR. and A. Loya, “Current Transport in Metal-Semiconductor-Metal (MSM) structures”, Solid-State Electronics, Vol. 14, 1209 (1971)
[26] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoç¸ G. Smith, M. Estes, B. Goldenberg, W. Yang and S. Krishnankutty, “High speed, low noise ultraviolet photodetectors based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n) structures”, Appl. Phys. Lett., Vol. 71, 2154, (1997)
[27] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Current transport mechanisms in GaN-based metal–semiconductor–metal photodetectors”, Appl. Phys. Lett, Vol. 72, 542 (1998)
[28] Jun Ohsawa, Takahiro Kozawa, Osamu Ishiguro, and Hiroshi Itoh, “Different Bias-Voltage Dependences of Photocurrent in Pt/InGaN/GaN and Pt/GaN Schottky Photodetectors on Sapphire”, Jpn. J. Appl. Phys, Vol. 45, L435 (2006)
[29] Y. B. Lee, T. Wang, Y. H. Liu, J. P. Ao, Y. Izumi, Y. Lacroix, H. D. Li, J. Bai, Y. Naoi, and S. Sakai, “High-Performance 348 nm AlGaN/GaN-Based Ultraviolet-Light-Emitting Diode with a SiN Buffer Layer”, Jpn. J. Appl. Phys, Vol . 41, 4450 (2002)
[30] M. Razeghi, P. Sandvik, P. Kung, D. Walker, K. Mi, X. Zhang, V. Kumar, J. Diaz, and F. Shahedipour, “Lateral epitaxial overgrowth of GaN on sapphire and silicon substrates for ultraviolet photodetector applications”, Materials Science and Engineering B, v B74, 107 (2000)
[31] S. E. Park, S. M. Lim, C. R. Lee, C. S. Kim, and Byungsung O, “Influence of SiN buffer layer in GaN epilayers”, J. Cryst. Growth, Vol. 21, 334 (2003)
[32] S. Sakai, T. Wang, Y. Morishima, and Y. Naoi, “A new method of reducing dislocation density in GaN layer grown on sapphire substrates by MOVPE”, J. Cryst. Growth, Vol. 249, 487 (2000)
[33] S. Sakai, T. Wang, Y. Morishima, and Y. Naoi, “A new method for a great reduction of dislocation density in a GaN layer grown on a sapphire substrate”, J. Cryst. Growth, Vol. 213, 188 (2000)
[34] K. Uchida, K. Nishida, M. Kondo, and H. Munekata, “Epitaxial growth of GaN layers with double-buffer layers”, J. Cryst. Growth, Vol. 189, 270 (1998)
[35] C. H. Kuo, S. J. Chang, Y. K. Su, C. K. Wang, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. M. Tsai, and C. C. Lin, “Nitride-based blue LEDs with GaN/SiN double buffer layers”, Solid-State Electronics, Vol. 47, 2019 (2003)
[36] S. C. Wei, Y. K. Su, S. J. Chang, S. M. Chen, and W, L, Li, “Nitride-based MQW LEDs with multiple GaN-SiN nucleation layers”, IEEE Transactions on Electron Devices, v 52, 1104 (2005)
[37] J. K. Sheu etc., “Ultraviolet band-pass Schottky barrier photodetectors
formed by Al-doped ZnO contacts to n-GaN” , Appl. Phys. Lett, Vol. 88, 043506 (2006)
[38] S. J. Chang, M. L. Lee, J. k. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. J. Kao, G. C. Chi, and J. M. Tsai, “GaN metal-semiconductor-metal photodetectors with low-temperature-GaN cap layers and ITO metal contacts”, IEEE Electron. Dev. Lett. Vol. 24, 212 (2003)
[39] M. L. Lee, J. k. Sheu, Y. K. Su, S. J. Chang, W. C. Lai, and G. C. Chi, “Reduction of dark current in AlGaN-GaN Schottky-barrier photodetectors with a low-temperature-grown GaN cap layer”, IEEE Electron. Dev. Lett. Vol. 25, 593 (2004)
[40] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal-semiconductor -metal ultraviolet photodetectors fabricated on single-crystal GaN”, Journal of Applied Physics. Dev. Volume 83, number 11 (1998)
[41] O. Katz, etc. “Gain mechanism in GaN Schottky ultraviolet detectors”, Appl. Phys. Lett., Vol. 79, 10 (2001)
[42] H. Norde, “A modified forword I-V plot for Schottky diodes with high series resistance” , J. Appl. Phys., Vol. 16, 444 (1996)
[43] S. K. Cheung, etc. “Extraction of Schottky diode parameters from forward current-voltage characteristics” , Appl. Phys Lett., Vol. 49 (2), (1986)
[44] C. J. Collins, T. Li, D. J. H. Lambert, M. M. Wong, R. D. Dupuis, and J. C. Campbell, “Selective regrowth of Al0.30GaN0.70N p-i-n photodiodes”, Appl. Phys. Lett., Vol. 77, 2810 (2000).