| 研究生: |
陳皇宇 Chen, Huang-Yu |
|---|---|
| 論文名稱: |
微波輔助燒結製備應用於白光LED之紅光及綠光螢光粉 Red and green phosphors prepared using microwave assisted sintering applied in white light LED |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 共同指導教授: |
楊茹媛
Yang, Ru-Yuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 183 |
| 中文關鍵詞: | 螢光粉 、微波 、燒結 |
| 外文關鍵詞: | phosphor, microwave, sintering |
| 相關次數: | 點閱:68 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本實驗中,我們選用三種不同的結構做為主體晶格,分別為Sr2SiO4、YInGe2O7及BaY2ZnO5。這些主體晶格分別摻雜Eu3+、Sm3+及Tb3+以製備紅光及綠光螢光粉。本實驗利用微波輔助燒結法製備紅光及綠光螢光粉,並討論其微結構及發光特性。為了做比較,另外利用傳統高溫爐以相同的燒結溫度但較長的燒結時間製備螢光粉。結果顯示,利用微波輔助燒結法製備之螢光粉可得到純相,表示利用微波輔助燒結法可在相當短的燒結時間內(1小時)即可得到單一相的螢光粉。因此,利用微波輔助燒結法製備高品質螢光粉可降低製程時間、成本及所需的能量。
另外,助熔劑 (flux)也常被用來促進燒結過程並提升螢光粉的發光特性。在本研究中,我們利用NH4Cl、Li2CO3、Na2CO3及K2CO3 做為助熔劑。助熔劑輔助固態燒結法在過去已被廣泛的用來降低燒結溫度及持溫時間。助熔劑同時可用來控制粉末的平均粒徑及螢光粉的外觀,外觀大小均勻的微米級螢光粉可有效的提升其發光亮度。另外,在本實驗中,我們利用鹼金族離子 (Li+、Na+、K+)來補償電荷,其可增加螢光粉的結晶性及發光強度。
在本研究的最後部分,我們選擇最佳條件所製備之螢光粉,並比較其發光特性。接著,我們選擇具有最佳的發光特性的紅色螢光粉與商用YAG:Ce黃粉混合,並封裝成白光LED。由實驗結果可知,本實驗利用微波輔助燒結法製備之紅色螢光粉應可提升一般YAG:Ce封裝之白光LED的演色性。
In this work, we choose three different structures as host, which are Sr2SiO4, YInGe2O7, and BaY2ZnO5. These structures are doped with Eu3+, Sm3+, and Tb3+ ions to produce red and green phosphors. The red and green phosphors are synthesized using microwave assisted sintering technique and discussed its microstructure and photoluminescent properties. For comparison, the sample was also sintered in the conventional furnace at the same sintering temperature for the same or longer holding time. The results show that the phosphors prepared using microwave assisted sintering can obtain the pure phase, indicating that rather short sintering time (1hr) is required to form the single phase of the phosphor. Therefore, microwave processing has the potential to reduce the time, cost, and required energy for the high quality production of phosphors.
In addition, several fluxes are used to improve the sintering process and to enhance the photoluminescent properties of the phosphors. In this study, NH4Cl, Li2CO3, Na2CO3, and K2CO3 are used as flux. Flux assisted solid state reaction method is a potential synthesis which were widely used to reducing the sintering temperature and holding time, and to obtain phosphor powders with desirable phases and properties. The flux also plays an important role in the control of the mean size, size distribution, and the shape of phosphor particles, which are used to improve the brightness of regularly shaped phosphor particles of micrometer size. Moreover, alkali metal ions such as Li+, Na+, and K+ are used for charge compensation to increase the crystallanity and enhance the emission intensity of Sr2SiO4:Eu3+ phosphors.
In the last part of this work, we choose the best sintering condition for each phosphor, and compare their photoluminescent properties. Among these, we choose a red phosphor with the best photoluminescent properties and try to package it into the commercial YAG:Ce white LED. The addition of the red phosphor prepared using microwave assisted sintering in this study is supposed to improve the color rendering properties of the commercial YAG:Ce white LED.
[1] 蘇勉增, 吳世康, 發光材料, 第四卷, 2002.
[2] 謝煜弘, 電子材料, 三版, 新文京開發, 2005.
[3] Fred Schubert, Light-Emitting Diodes, The press syndicate of the university of Cambridge, UK, 2003.
[4] Skoog, Holler, Nieman, Principles of Instrumental analysis, fifth edition, Saunders college Publishing, 1992.
[5] Jang HS, Jeon DY, Yellow-emitting Sr3SiO5:Ce3+,Li+ phosphor for white-light-emitting diodes and yellow-light-emitting diodes, Appl. Phys. Lett. 90, 041906 (2007).
[6] Kim JU, Kim YS, Yang H, Nanocrystalline Y3Al5O12:Ce phosphor-based white light-emitting diodes embedded with CdS:Mn/ZnS core/shell quantum dots, Mater. Lett. 63, 614 (2009).
[7] Kim JS, Jeon PE, Choi JC, Park HL, Emission color variation of M2SiO4:Eu2+ (M=Ba, Sr, Ca) phosphors for light-emitting diode, Solid State Commun. 133, 187 (2005).
[8] S. Kubota, H. Hara, H. Yamane, M. Shimada, Luminescent property of Eu3+ in a new compound, (Sr0.99La1.01)Zn0.99O3.495, J. Electrochem. Soc. 149, H68 (2002).
[9] S. Kubota, R. L. Stanger, Y. Suzuyama, H. Yamane, M. Shimada, Luminescent properties of Eu3+ in defect apatite, Sr3La6(SiO4)6, J. Electrochem. Soc. 149, H134 (2002).
[10] K. Tadatomo, H. Okagawa, Y. Ohuchi, Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo, T. Taguchi, High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic Vapor Phase Epitaxy, Phys. Status Solidi A 188, 121 (2001).
[11] L. Zhang, X. Zhou, H. Zeng, H. Chen, X. Dong, White-light long-lasting phosphor Sr2SiO4:Pr3+, Mater. Lett., 62, 2539 (2008).
[12] J. Dhanaraj, R. Jagannathan, T.R.N. Kutty, C.H. Lu, Photoluminescence Characteristics of Y2O3:Eu3+ Nanophosphors Prepared Using Sol−Gel Thermolysis, J. Phys. Chem. B, 105, 11098 (2001).
[13] K. Uematsu, K. Toda, M. Sato, Preparation of YVO4:Eu3+ phosphor using microwave heating method, J. Alloys. Compd. 389, 209 (2005).
[14] R.Y. Yang, H.Y. Chen, C.M. Hsiung, S.J. Chang, Crystalline morphology and photoluminescent properties of YInGe2O7:Eu3+ phosphors prepared from microwave and conventional sintering, Ceram. Int., 37, 749 (2011).
[15] H. Yang, J. Shi, M. Gong, A novel approach for preparation of Zn2SiO4:Tb nanoparticles by sol-gel-microwave heating, J. Mater. Sci. 40, 6007 (2005).
[16] K. Ming, L. Jun, Y. Guangfu, S. Rong, Preparation and characterization of Eu3+-doped CaCO3 phosphor by microwave synthesis, Rare Metals, 28, 439 (2009).
[17] J.A. Kaduk, W. Wong-Ng, W. Greenwood, J. Dillingham, and B.H. Toby, Crystal Structures and Reference Powder Patterns of BaR2ZnO5(R = La, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er, and Tm), J. Res. Nat. Inst. Stand. Technol. 104, 147 (1999).
[18] 梁志豪, Ba1-xSrxM2ZnO5 (M:Y, La) (x=0~1)系之光致發光特性之研究, 碩士論文, 成功大學, 2007/07.
[19] E.A.Juarez-Arellano, L.Bucio, J.L. Ruvalcaba, R.Moreno-Tovar, J.F. Garcia-Robledo and E.Orozco,The crystal structure of InYGe2O7 germanate, Z. Kristallogr. 217, 201 (2002).
[20] G. Pieper, W. Eysel and T. Hahn, “Solid solubility and polymorphism in the system Sr2SiO4-Sr2GeO4-Ba2GeO4-Ba2SiO4”, Journal of the American Ceramic Society 55, 619 (1972).
[21] 陳文成, 銪活化Sr2-xBaxSiO4及Sr3-xBaxSiO5螢光材料, 碩士論文, 成功大學, 2008/07.
[22] 廖宇久, 以固態燒結法製作硫化鋅系螢光粉發光特性研究, 碩士論文, 高雄應用科技大學, 2006/06.
[23] G. Blasse, and B. C. Grabmaier, Luminescent materials, Springer Verlag, Berlin Heidelberg, 13 (1994).
[24] R. C. Ropp, Luminescence and the Solid State, Elsevier (1991)
[25] S. Shionoya, and W. M. Yen (ed.), Phosphor Handbook, Chap. 2, CRC Press, Washington D. C. (1998).
[26] S.O. Kasap, 光電子學與光子學-原理與應用, 初版一刷, 全威圖書, 2003.
[27] 劉如熹, 王健源, 白光發光二極體製作技術, 全華圖書, 2001.
[28] J.A. DeLuca, An introduction to luminescence in inorganic solids, J. Chem. Educ. 57, 541 (1980).
[29] M.N. Rahaman, Sintering technology, New York: Marcel Dekker, 1990.
[30] S.J.L. Kang, Sintering: densification, grain growth, and microstructure, Elsevier Butterworth- Heinemann, 2005.
[31] 劉如熹, 紀喨勝, 紫外光發光二極體用螢光粉介紹, 全華圖書, 2002.
[32] K.E. Haque, Microwave energy for mineral treatment processes—a brief review, Int. J. Miner. Process. 57, 1 (1999).
[33] D.E. Clark, W.H. Sutton, Microwave Processing of Materials, Ann. Rev. Mater. Sci. 26, 299 (1996).
[34] W.H. Sutton, American Ceramic Society Bulletin 68, 376 (1989).
[35] 陳嘉民, 微波輔助溶液燃燒合成法製備螢光粉體, 碩士論文, 成功大學, 2006/06.
[36] David E. Clark, Microwave processing of materials, Annu. Rev. Mater. Sci., 26, 299 (1996).
[37] G. Pucker, K. Gatterer, and H. P. Fritzer, Optical investigation of Eu3+ in a sodium borosilicate glass: evidence for two different site distributions, Phys. Rev. B, 53, 6225 (1996).
[38] J. Dhanaraj, R. Jagannathan, T.G.N. Kutty, C.H. Lu, Photoluminescence characteristics of Y2O3:Eu3+ nanophosphors prepared using sol-gel thermolysis, J. Phys. Chem. B 105, 11098 (2001).
[39] B. Yan, X.Q. Su, In situ chemical coprecipitation composition of hybrid precursors to synthesize YPxV1−xO4:Eu3+ micron crystalline phosphors, Mater. Sci. Eng. B, 116, 196 (2005).
[40] A. Nag, T.G.N. Kutty, The light induce valence change of europium in Sr2SiO4:Eu involving transient crystalstructure, J. Mater. Chem. 14, 1598 (2004).
[41] Y. Qiao, X. Zhang, X. Ye, Y. Chen, H. Guo, Photoluminescent properties of Sr2SiO4:Eu3+ and Sr2SiO4:Eu2+ phosphors prepared by solid-state reaction method, J. Rare Earths 27, 323 (2009).
[42] K. Uematsu, K. Toda, M. Sato, Preparation of YVO4:Eu3+ phosphor using microwave heating method, J. Alloys. Compd., 389, 209 (2005).
[43] R.Y. Yang, H.Y. Chen, C.M. Hsiung, S.J. Chang, Crystalline morphology and photoluminescent properties of YInGe2O7:Eu3+ phosphors prepared from microwave and conventional sintering, Ceram. Int., 37, 749 (2011).
[44] M. Catti, G. Gazzoni, G. Ivaldi, Structures of twinned β-Sr2SiO4 and of α'-Sr1.9Ba0.1SiO4, Acta Cryst. C, 39, 29 (1983).
[45] B.G. Hyde, J.R. Sellar, L. Stenberg, The β→α’ transition in Sr2SiO4 (and Ca2SiO4, K2SeO4 etc.), involving a modulated structure, Acta Cryst. B, 42, 423 (1986).
[46] A.M. Pires, M.F. Santos, M.R. Davolos, E.B. Stucchi, The effect of Eu3+ ion doping concentration in Gd2O3 fine spherical particles, J. Alloys. Compd., 344, 276 (2002).
[47] L. Zhang, X. Zhou, H. Zeng, H. Chen, X. Dong, White-light long-lasting phosphor Sr2SiO4:Pr3+, Mater. Lett., 62, 2539 (2008).
[48] T.H. Fang, Y.J. Hsiao, Y.S. Chang, Y.H. Chang, Photoluminescent characterization of KNbO3:Eu3+, Mater. Chem. Phys., 100, 418 (2006).
[49] W.W. Zhang, W.P. Zhang, P.B. Xie, M. Yin, H.T. Chen, L. Jing, Y.S. Zhang, L.R. Lou, S.D. Xia, ical properties of nanocrystalline Y2O3:Eu depending on its odd structure, J. Colloid Interface Sci., 262, 588 (2003).
[50] B.N.S. Bhaktha, C. Kinowski, M. Bouazaoui, B. Capoen, O. Robbe-Cristini, F. Beclin, P. Roussel, M. Ferrari, and S. Turrell, Controlled growth of SnO2 nanocrystals in Eu3+-doped SiO2-SnO2 planar waveguides: a spectroscopic investigation, J. Phys. Chem. C 113, 21555 (2009).
[51] L.S. Birks and H. Friedman, Particle size determination from X‐ray line broadening, J. Appl. Phys. 17, 687 (1946).
[52] W.H. Hsu, M.H. Sheng, M.S. Tsai, Preparation of Eu-Activated strontium orthosilicate (Sr1.95sio4:Eu0.05) phosphor by a sol-gel method and its luminescent properties, J. Alloys Compd. 467, 491 (2009).
[53] C.Y. Tsay, K.S. Liu, I.N. Lin, Microwave sintering of (Bi0.75Ca1.2Y1.05)(V0.6Fe4.4)O12 microwave magnetic materials, J. Eur. Ceram. Soc. 24, 1057 (2004).
[54] Z.P. Xie, X.D. Fan, Y. Huang, Accelerated sintering and phase transformation of TiO2 in microwave radiation, J. Mater. Res. 13, 3417 (1998).
[55] J.H. Lee, Y.J. Kim, Photoluminescent Properties of Sr2SiO4:Eu2+ phosphors prepared by solid-state reaction method, Mater. Sci. Eng. B 146, 99 (2008).
[56] E. D. Bacce, A. M. Pires, M. R. Davolos, Influence of Zn2+ co-doping ion on Eu3+–O2− associate luminescence in Sr2SiO4, J. Alloys Compd. 344, 312 (2002).
[57] B. N. S. Bhaktha, C. Kinowski, M. Bouazaoui, B. Capoen, O. Robbe-Cristini,† F. Beclin, P. Roussel, M. Ferrari, and S. Turrell, Controlled growth of SnO2 nanocrystals in Eu3+-doped SiO2-SnO2 planar waveguides: a spectroscopic investigation, J. Phys. Chem. C 113, 21555 (2009).
[58] S. Oshio, K. Kitamura, T. Shigeta, S. Horii, T. Matsuoka, S. Tanaka, H. Kobayashi, Firing Technique for Preparing a BaMgAl10 O17 : Eu2 + Phosphor with Controlled Particle Shape and Size, J. Electrochem. Soc., 146, 392 (1999).
[59] D.S. Jung, S.K. Hong, H.J. Lee, Y.C. Kang, Effect of boric acid flux on the characteristics of (CeTb)MgAl11O19 phosphor particles prepared by spray pyrolysis, J. Alloys. Compd., 398, 309 (2005).
[60] H.J. Lee, K.P. Kim, G.Y. Hong, J.S. Yoo, The effect of flux materials on the physical and optical properties of Eu3+-activated yttrium oxide phosphors, J. Lumin., 130, 941 (2010).
[61] H. Jiao, X. Gao, F. Wang, A. Wu, T. Han, Self-assembled Y2SiO5 superstructures: A high temperature method with mixed flux, J. Alloys. Compd., 493, 427 (2010).
[62] H. Liu, Y. Hao, H. Wang, J. Zhao, P. Huang, B. Xu, Luminescent properties of R+ doped Sr2SiO4:Eu3+(R+=Li+, Na+ and K+) red-emitting phosphors for white LEDs, J. Lumin. 131, 2422 (2011).
[63] P.D. Ramesh, D. Brandon, L. Schächter, Use of partially oxidized SiC particle bed for microwave sintering of low loss ceramics, Mater. Sci. Eng. A, 266, 211 (1999).
[64] C. Molina, S.J.L. Ribeiro, K. Dahmouche, C.V. Santilli, A.F. Craievich, EXAFS, SAXS and Eu3+ Luminescence Spectroscopy of Sol-Gel Derived Siloxane-Polyethyleneoxide Hybrids, J. Sol-Gel Sci. Tech., 19, 615 (2000).
[65] L. Cheng, H. Zhong, J. Sun, X. Zhang, Y. Peng, T. Yu, X. Zhao, Flux and concentration effect on Eu3+ doped Gd2(MoO4)3 phosphor, J. Rare Earths, 26, 211 (2008).
[66] Zhi-Jun Zhang, Shuang Chen, Jiao Wang, Hao-Hong Chen, Xin-Xin Yang, Jing-Tai Zhao, Ye Tao, and Yan Huang, VUV–UV spectroscopic properties of RE (RE3+ = Ce, Eu and Tb)-doped KMLn(PO4)2 (M2+ = Ca, Sr; Ln3+ = Y, La, Lu), Optical Mater., 32, 99 (2009).
[67] S. Shi, J. Gao and J. Zhou, Effects of charge compensation on the luminescence behavior of Eu3+ activated CaWO4 phosphor, Opt. Mater. 30, 1616 (2008).
[68] Y. Su, L. Li, G. Li, Synthesis and Optimum Luminescence of CaWO4-Based Red Phosphors with Co doping of Eu3+ and Na+, Chem. Mater. 20, 6060 (2008).
[69] F. Duault, M. Junker, P. Grosseau, B. Guilhot, P. Iacconi, B. Moine, Effect of different fluxes on the morphology of the LaPO4:Ce,Tb phosphor, Powder Technol. 154, 132 (2005).
[70] J. Du, S. Liang, X. Wang and Z. Fan, Simulation of the neck growth of non-isometric biosphere during initial sintering, Acta Metall. Sin. 22, 263 (2009).
[71] K.L. Liou, Y.F. Wu, I.G. Chen, Synthesis and Photoluminescence of Y2BaZnO5:Eu3+, A+ (A = K, Na, Li) with Alkali Carbonate, J. Taiwan Vac. Soc. 23, 41 (2010).
[72] Y.S. Chang, H.J. Lin, Y.L. Chai, Preparation and luminescent properties of europium-activated YInGe2O7 phosphors, J. Alloys. Compd. 460, 421 (2008).
[73] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A 32, 751 (1976).
[74] Y. Shimomura and N. Kijima, High-Luminance Y2O3:Eu3+ Phosphor Synthesis by High Temperature and Alkali Metal Ion-Added Spray Pyrolysis, J. Electrochem. Soc. 151, H86 (2004).
[75] H.Q. Liu, L.L. Wang, S.Q. Chen, B. Zou, Effect of concentration on the luminescence of Eu3+ ions in nanocrystalline La2O3, J. Lumin. 126, 459 (2007).
[76] 楊茹媛,陳皇宇,李鴻昇,張守進,翁敏航,以微波燒結法製備鋇釔鋅氧螢光粉之發光特性研究,中國材料科學學會九十八年度年會.
[77] C.H. Liang, Y.C. Chang, Y.S. Chang, Synthesis and photoluminescence characteristics of color-tunable BaY2ZnO5:Eu3+ phosphors, Appl. Phys. Lett. 93, 211902 (2008).
[78] Y. Lin, Z. Tang, Z. Zhang, C.W. Nan, Luminescence of Eu2+ and Dy3+ activated R3MgSi2O8-based (R=Ca, Sr, Ba) phosphors, J. Alloys Compd., 348, 76 (2003).
[79] K.N. Shinde, S.J. Dhoble, Animesh Kumar, Eu3+ activated M6AlP5O20 (M=Sr/Ba/Mg) novel red phosphors, J. Lumin. 131, 1939 (2011).
[80] H. Dawei, Z. Xinrong, W. Yongsheng, Luminescence Properties of (MxMg1-x)2SiO4:Dy3+, Eu3+ (M=Ca, Sr, Ba), Adv. Mater. Res. 105-106, 827 (2010).
[81] H. Zhang, X. Fu, S. Niu, Q. Xin, Synthesis and photoluminescence properties of Eu3+-doped AZrO3 (A = Ca, Sr, Ba) perovskite, J. Alloys Compd. 459, 103 (2008).
[82] C.H. Liang, Y.C. Chang, Photoluminescence properties of Eu3+-doped BaY2ZnO5 phosphors under near-ultraviolet irradiation, J. Mater. Res. 25, 850 (2010).
[83] B.V. Rao, U. Rambabu, S. Buddhudu, Photoluminescence spectral analysis of Eu3+: Phosphors, Physica B 382, 86 (2006).
[84] S.J. Dhoble, N.S. Dhoble and R.B. Pode, Preparation and characterization of Eu3+ activated CaSiO3, (CaA)SiO3 [A=Ba or Sr] phosphors, Bull. Mater. Sci., 26, 377 (2003).
[85] R. Diehal, G. Brandt, Crystal structure refinement of YAlO3, a promising laser material Original, Mater. Res. Bull. 10, 85 (1975).
[86] M.L Pang, J. Lin, Z.Y. Cheng, J. Fu, R.B. Xing, S.B. Wang, Patterning and luminescent properties of nanocrystalline Y2O3:Eu3+ phosphor films by sol-gel soft lithography, Materials Science and Engineering:B, 100, 124 (2003).
[87] 陳信良, BaY2ZnO5:Tb螢光粉發光特性研究,碩士論文,屏東科技大學, 2010/07.
[88] Y. S. Chang, H. J. Lin, Y. C. Li, Y. L. Chai, Y. Y. Tsai, Synthesis and luminescent properties of Tb3+-activated yttrium indium germanate phosphor, J. Solid State Chem. 180, 3076 (2007).
[89] C. Armellinin, M. Ferrari, M. Montagna, G. Pucker, C. Bernard, A. Monteil, Terbium(III) doped silica-xerogels: effect of aluminium(III) co-doping, J. Non-Cryst. Solids 245, 115 (1999).
[90] D. Haranath, P. Sharma, H. Chander, A. Ali, N. Bhalla, S.K. Halder, Role of boric acid in synthesis and tailoring the properties of calcium aluminate phosphor, Mater. Chem. Phys. 101, 163 (2007).
[91] L. J. Nugent, R. D. Baybarz, J. L. Burnett, and J. L. Ryan, Electron-transfer and f-d absorption bands of some lanthanide and actinide complexes and the standard (II-III) oxidation potential for each member of the lanthanide and actinide series, J. Phys. Chem. 77, 1528 (1973).
[92] C.H. Liang, L.G. Teoh, K.T. Liu, Y.S. Chang, Near white light emission of BaY2ZnO5 doped with Dy3+ ions, J. Alloys Compd. 517, 9 (2012).
[93] Y. Tian, B. Chen, H. Yu, R. Hua, X. Li, J. Sun, L. Cheng, H. Zhong, J. Zhang, Y. Zheng, T. Yu, L. Huang, J. Colloid Interface Sci. 360, 586 (2011).
[94] Y. Tian, B. Chen, B. Tian, J. Sun, X. Li, J. Zhang, L. Cheng, H. Zhong, H. Zhong, Q. Meng, Ruinian Hua, Ionic liquid-assisted hydrothermal synthesis of dendrite-like NaY(MoO4)2:Tb3+ phosphor, Physica B 407, 2556 (2012).
[95] J.C. Park, H.K. Moon, D.K. Kim, S.H. Byeon, B.C. Kim, K.S. Suh, Morphology and cathodoluminescence of Li-doped Gd2O3:Eu3+, a red phosphor operating at low voltages, Appl. Phys. Lett. 77, 2162 (2000).
[96] C.L. Lo, J.G. Duh, B.S. Chiou, C.C. Peng, L. Ozawa, Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method, Mater. Chem. Phys. 71, 179 (2001).
[97] B. Han, H.B. Liang,H.H. Lin, J.P. Zhong, Q. Su, Q.B. Zhang, and Y.B. Fu, Green emission of Ca3La3(1−x)Tb3x(BO3)5 under VUV-UV excitation, Appl. Phys. A 88, 705 (2007).
[98] J.S. Bae, S.S. Park, T.E. Hong, J.P. Kim, J.H. Yoon, E.D. Jeong, M.S. Won, J.H. Jeong, Optical and surface analysis of lithium incorporated GdVO4:Eu3+ phosphor powders, Curr. Appl. Phys. 9, S241 (2009).
[99] C.C. Lin, Y.S. Tang, S.F. Huc, R.S. Liu, KBaPO4:Ln (Ln = Eu, Tb, Sm) phosphors for UV excitable white light-emitting diodes, J. Lumin. 129, 1682 (2009).
[100] G. Zerihun Assefa, R.G. Haire, P.E. Rasion, Photoluminescence and Raman studies of Sm3+ and Nd3+ ions in zirconia matrices: Example of energy transfer and host-guest interactions, Spectrochim. Acta, Part A 60, 89 (2004).
[101] S. Lange, I. Sildos, V. Kiisk, J. Aarik, S. Lange, I. Sildos, V. Kiisk, J. Aarik, Energy transfer in the photoexcitation of Sm3+-implanted TiO2 thin films, Mater. Sci. Eng., B 112, 87 (2004).
[102] Y. Zhou, J. Lin, S. Wang, Energy transfer and upconversion luminescence properties of Y2O3:Sm and Gd2O3:Sm phosphors, J. Solid State Chem. 171, 391 (2003).
[103] Y. Tamura, A. Shibukawa, Optical Studies of CaS:Eu, Sm Infrared Stimulable Phosphors, Jpn. J. Appl. Phys. 32, 3187 (1993).
[104] O.A. Lopez, J. McKittrick, L.E. Shea, Fluorescence properties of polycrystalline Tm3+-activated Y3Al5O12 and Tm3+-Li+ co-activated Y3Al5O12 in the visible and near IR ranges, J. Lumin. 71, 1 (1997).
[105] D. Hommel, H. Hartmann, Energy structure and recombination for ZnS bulk crystals doped with Tb, Er and Eu, J. Cryst. Growth 72, 346 (1985).
[106] S. Gutzov and M. Bredol, Preparation and luminescence of terbium and cerium-doped silica xerogels, J. Mater. Sci. 41, 1835 (2006).
[107] X. Liu, J. Lin, Synthesis and luminescent properties of LaInO3: RE3+ (RE = Sm, Pr and Tb) nanocrystalline phosphors for field emission displays, Solid-State Sci., 11, 2030 (2009).
[108] S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, Q.Y. Zhang, Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties, Mater. Sci. Eng. R, 71, 1 (2010).
[109] L.S. Chi, R.S. Liu, B.J. Lee, Synthesis of Y2O3:Eu, Bi Red Phosphors by Homogeneous Coprecipitation and Their Photoluminescence Behaviors General Topics, J. Electrochem. Soc. 152, 93 (2005).
[110] A. Xie, X.M. Yuan, S.J. Hai, J.J. Wang, F.X. Wang, L. Li, Enhancement emission intensity of CaMoO4:Eu3+, Na+ phosphor via Bi co-doping and Si substitution for application to white LEDs, J. Phys. D 42, 105107 (2009).
[111] S. Ye, C.H. Wang, X.P. Jing, Long Wavelength Extension of the Excitation Band of LiEuMo2O8 Phosphor with Bi3+ Doping Sensors and Displays: Principles, Materials, and Processing, J. Electrochem. Soc. 156, 121 (2009).
[112] S. Neeraj, N. Kijima, A.K. Cheetham, Novel red phosphors for solid state lighting; the system BixLn1−xVO4; Eu3+/Sm3+ (Ln=Y, Gd), Solid State Commun. 131, 65 (2004).