| 研究生: |
馬湘甯 Ma, Siang-Ning |
|---|---|
| 論文名稱: |
結構系統與結構材料對於鋼構建築碳排之影響 Influence of Structural Steel Alternatives and Framing on Embodied Carbon of SC Buildings |
| 指導教授: |
賴啟銘
Lai, Chi-Ming |
| 共同指導教授: |
張惠雲
Chang, Heui-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 鋼結構建築 、高強度鋼 、生命週期評估 、CO2排放量 |
| 外文關鍵詞: | steel structure building, high-strength steel, Life Cycle Assessment, embodied carbon |
| 相關次數: | 點閱:137 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋼結構為現代建築的主要發展趨勢之一,如何計算與控制其CO2排放量即為一個重要的研究課題。國內過去研究在分析各建材二氧化碳排放係數時,往往需要先假設單位材料各相關能源的消耗量,相關計算過程繁複且需定期更新數值,其中的鋼結構設計案例也相當少。本研究以BS EN 15978對建築物生命週期之定義為核心,針對文獻中的台灣鋼結構建築設計案例,進行生命週期評估 (Life Cycle Assessment, LCA),分析生產階段、施工建造階段與生命終結階段的CO2排放量,探討不同結構系統與鋼材強度的影響。本研究蒐集的國內鋼結構建築設計案例,包括使用兩種不同鋼材強度之40層樓鋼結構辦公大樓,與台灣目前常見的3種鋼結構系統 (即抗彎矩構架、偏心斜撐構架,以及挫屈束制斜撐構架) 之6層樓與20層樓的鋼結構辦公大樓。本研究根據設計案例的用鋼量與各階段生命週期二氧化碳排放係數,計算其單位樓地板面積CO2排放量,比較不同案例間的碳排放量差異與可能的影響因素。研究結果顯示,相較於國外案例,國內案例因為耐震設計需求使單位面積的用鋼量與CO2排放量均增加。另一方面,與RC結構相同,鋼結構的建築高度或樓層數增加,其單位面積CO2排放量會隨之增加。部分樓層柱採用高強度鋼材時,因為材料性能的提升可以降低建築的總用鋼量,進而降低CO2排放量。相較於偏心斜撐構架與挫屈束制斜撐構架,採用抗彎矩構架系統的用鋼量較高故會有較高之CO2排放量,但因為不同結構系統間總用鋼量接近,導致CO2排放量差距並不顯著。本研究相關成果可提供國內鋼結構建築設計與台灣減碳策略發展之參考。
This study aims to evaluate the impact of different factors on the carbon emissions of steel structure buildings. Embodied carbon coefficients were set for each life cycle stage of the buildings, and a detailed carbon emission calculation process was established. The cases in the domestic literature include steel structure buildings with two different steel strength levels and three different steel structural framing systems: MRF, EBF, and BRBF. Based on the steel usage and embodied carbon coefficients for each life cycle stage of the design cases, the unit floor area CO2 emissions are calculated to compare the differences in carbon emissions among different cases and explore potential influencing factors.
The research results indicate that compared to international cases, the unit area of steel usage and CO2 emissions in domestic cases increase due to seismic design requirements. On the other hand, similar to RC structures, the unit floor area CO2 emissions of steel structures increase with the increase in building height or number of floors. When high-strength steel is used for some floor columns, the total steel usage of the building can be reduced, resulting in a decrease in CO2 emissions due to the improved material performance. Compared to EBFs and BRBFs, buildings using the MRF system have higher CO2 emissions. However, the difference in CO2 emissions is not significant due to the similar steel usage among different structural systems. The relevant findings of this study can provide references for the design of steel structures in Taiwan and the development of carbon reduction strategies.
Abey, S.T. and Anand, K.B., 2019, Embodied Energy Comparison of Prefabricated and Conventional Building Construction, Journal of The Institution of Engineers (India): Series A, 100:777-790
Alwan, Z. and Jones, P., 2014, The importance of embodied energy in carbon footprint assessment, Structural Survey, 32
Bertin, I., Saadé, M., Roy, R.L., Jaeger, J.M., Feraille, A., 2022, Environmental impacts of Design for Reuse practices in the building sector, Journal of Cleaner Production, 349:131228
Blengini, G.A. and Carlo, T.D., 2010, Energy-saving policies and low-energy residential buildings: an LCA case study to support decision makers in Piedmont (Italy), The International Journal of Life Cycle Assessment
Cabeza, L.F., Boquera, L., Chàfer, M., Vérez, D., 2021, Embodied energy and embodied carbon of structural building materials: Worldwide progress and barriers through literature map analysis, Energy and Buildings, 231:110612
Cang, Y., Yang, L., Luo, Z., Zhang, N., 2020, Prediction of embodied carbon emissions from residential buildings with different structural forms, Sustainable Cities and Society, 54:101946
Chang, Y., Ries, R.J., Lei, S., 2012, The embodied energy and emissions of a high-rise education building: A quantification using process-based hybrid life cycle inventory model, Energy and Buildings, 55:790-798
Chen, Y., Fang, Y., Feng, W., Zhang, Y., Zhao, G.X., 2022, How to minimise the carbon emission of steel building products from a cradle-to-site perspective: A systematic review of recent global research, Journal of Cleaner Production, 368:133156
Crawford, R.H., Bartak, E.L., Stephan, A., Jensen, C.A., 2016, Evaluating the life cycle energy benefits of energy efficiency regulations for buildings, Renewable and Sustainable Energy Reviews, 63:435-451
Dong, Y., Ng, S.T., Liu, P., 2021, A comprehensive analysis towards benchmarking of life cycle assessment of buildings based on systematic review, Building and Environment, 204:108162
Du, P., Wood, A., Stephens, B., Song, X., 2015, Life-Cycle Energy Implications of Downtown High-Rise vs. Suburban Low-Rise Living: An Overview and Quantitative Case Study for Chicago, Building, 5:1003-1024
Eckelman, M.J., Brown, C., Troup, L.N., Wang, L., Webster, M.D., Hajjar, J.F., 2018, Life cycle energy and environmental benefits of novel design-for-deconstruction structural systems in steel buildings, Building and Environment, 143:421-430
Gan, V.J.L., Chan, C.M., Tse, K.T., Lo, I.M.C., Cheng, J.C.P., 2017, A comparative analysis of embodied carbon in high-rise buildings regarding different design parameters, Journal of Cleaner Production, 161:663-675
Grinham, J., Fjeldheim, H., Yan, B., Helge, T.D., Edwards, K., Hegli, T., Malkawi, A., 2022, Zero-carbon balance: The case of HouseZero, Building and Environment, 207:108511
Hawkins, W., Cooper, S., Allen, S., Roynon, J., Ibell, T., 2021, Embodied carbon assessment using a dynamic climate model: Case-study comparison of a concrete, steel and timber building structure, Structures, 33:90-98
Ingrao, C., Messineo, A., Beltramo, R., Yigitcanlar, T., Ioppolo, G., 2018, How can life cycle thinking support sustainability of buildings? Investigating life cycle assessment applications for energy efficiency and environmental performance, Journal of Cleaner Production, 201:556-569
Lin, K.C., Lin, C.C.J., Chen, J.Y., Chang, H.Y., 2010, Seismic reliability of steel framed buildings, Structural Safety, 32:174-182
Minunno, R., O'Grady, T., Morrison, G.M., Gruner, R.L., 2021, Investigating the embodied energy and carbon of buildings: A systematic literature review and meta-analysis of life cycle assessments, Renewable and Sustainable Energy Reviews, 143:110935
Pacheco-Torres, R., Jadraque, E., Roldán-Fontana, J., Ordóñez, J., 2014, Analysis of CO2 emissions in the construction phase of single-family detached houses, Sustainable Cities and Society, 12:63-68
Pan, W. and Teng, Y., 2021, A systematic investigation into the methodological variables of embodied carbon assessment of buildings, Renewable and Sustainable Energy Reviews, 141:110840
Pomponi, F. and Moncaster, A., 2016, Embodied carbon mitigation and reduction in the built environment –What does the evidence say?, Journal of Environmental Management, 181:687-700
Pomponi, F. and Moncaster, A., 2018, Scrutinising embodied carbon in buildings: The next performance gap made manifest, Renewable and Sustainable Energy Reviews, 81:2431-2442
Qi, Z., Gao, C., Na, H., Ye, Z., 2018, Using forest area for carbon footprint analysis of typical steel enterprises in China, Resources, Conservation and Recycling, 132:352-360
Rashid, A.F.A. and Yusoff, S., 2015, A review of life cycle assessment method for building industry, Renewable and Sustainable Energy Reviews, 45:244-248
Röck, M., Saade, M.R.M., Balouktsi, M., Rasmussen, F.N., Birgisdottir, H., Frischknecht, R., Habert, G., Lützkendorf, T., Passer, A., 2020, Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation, Applied Energy, 258:114107
Roberts, M., Allen, S., Clarke, J., Searle, J., Coley, D., 2023, Understanding the global warming potential of circular design strategies: Life cycle assessment of a design-for-disassembly building, Sustainable Production and Consumption, 37:331-343A. Shukla, G.N. Tiwari, M.S. Sodha, 2009, Embodied energy analysis of adobe house, Renewable Energy, 34:755-761
Saade, M.R.M., Guest, G., Amor, B., 2020, Comparative whole building LCAs: How far are our expectations from the documented evidence?, Building and Environment, 167:106449
Sperle, J.O., 2012, Environmental advantages of using advanced high strength steel in steel constructions, Nordic Steel Construction Conference
Sperle, J.O., Hallberg, L., Larsson, J., Groth, H., Östman, K., Larsson, J., 2013, The environmental value of high strength steel structures, The Steel Eco-Cycle Environmental Research Programme for the Swedish Steel Industry
Teng, Y. and Pan, W., 2019, Systematic embodied carbon assessment and reduction of prefabricated high-rise public residential buildings in Hong Kong, Journal of Cleaner Production, 238:117791
交通部統計處,民國111年,汽車貨運調查報告
杜怡萱、李雅琪、黃誠中,2016,RC建築結構體建材用量與碳排放量之影響因子研究,台灣建築學會「建築學報」第95期,59~73頁
吳政庭,謝政廷,陳怡君,陳起鳳,2022,不同建材建物生命週期碳排與環境衝擊初步估算,中華民國營建工程學會第二十屆營建產業永續發展研討會
林克強,2014,鋼構造抗彎矩構架建築結構設計實例,國家地震工程研究中心
林憲德,蔡耀賢,楊詩弘,2019,建築材料碳足跡資料系統建置之研究,內政部建築研究所委託研究報告
陳政宇,2008,意外偏心對鋼結構建築物耐震可靠度影響研究,國立高雄大學土木與環境工程研究所碩士論文,張惠雲教授指導
張惠雲、鄭凱航、王俐曆、方揚盛、廖硃岑,2018,台灣結構高層建築長期維持成本案例研究,台灣建築學會「建築學報」第103期,69~85頁
劉琨泰,2014,超高強度鋼高層建築結構之耐震評估研究,國立高雄大學土木與環境工程研究所碩士論文,張惠雲教授指導
魏志毓,2006,挫屈束制支撐局部挫屈與構架耐震效益分析研究,國立臺灣大學土木工程研究所碩士論文,蔡克銓教授指導