| 研究生: |
蔡育琳 Tsai, Yu-Lin |
|---|---|
| 論文名稱: |
含甜菜鹼修飾基團之兩性離子聚胺酸高分子合成、分子自組裝及應用 Synthesis, Self-assembly and Applications of Zwitterionic Polypeptides Containing Betaine Groups |
| 指導教授: |
詹正雄
Jan, Jeng-Shiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 195 |
| 中文關鍵詞: | 聚電解質 、聚胺酸 、雙親性高分子 、抗吸附 、甜菜鹼 |
| 外文關鍵詞: | polyelectrolyte, polypeptide, zwitterionic polymer, anti-fouling polymer, betaine |
| 相關次數: | 點閱:70 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中,利用點擊化學合成方法將小分子甜菜鹼基團接枝於聚胺酸高分子支鏈上,形成聚電解質胺基酸高分子。並探討同聚物聚電解質胺基酸高分子PPLG-g-CB及PPLG-g-SB的核磁共振光譜和紅外光光譜在反應前後的變化,以及不同pH值環境下高分子構象的改變。並也對高分子測定滴定曲線與圓二色光譜作結合,討論彼此的相關性。不同比例嵌段聚胺酸高分子PBLG-b-PPLG及所合成的聚電解質胺基酸高分子除了討論光譜變化外,也針對高分子自組裝所形成的奈米粒子,討論奈米粒子粒徑對環境因素的影響與圓二色光譜和滴定曲線的關聯性,並對奈米粒子的介達電位進行分析。研究中,也將聚電解質嵌段高分子所形成的奈米粒子,以動態粒徑分析儀測定在不同濃度中對蛋白的抗吸附效果作評估。最後,我們也將高分子塗佈於晶圓表面,進行抗汙效果的測試。
In this work, we reported a novel synthetic route for synthesizing zwitterionic polypeptide derivatives containing azide functionalized carboxybetaine (CB) or sulfobetaine (SB) groups, which two betaine groups are never reported before. These zwitterionic polypeptide derivatives were synthesized by ring-opening polymerization (ROP) of γ-propargyl-L-glyatmate N-carboxyanhydrides and subsequent conjugation of the betaine groups onto the side chains using click chemistry. The as-prepared zwitterionic polypeptide derivatives are expected to exhibit new structures and functions different from the conventional polypeptides. The compositions, molecular weight and characteristic of functional groups of zwitterionic polypeptides were studied by NMR, FT-IR and GPC. The pKa values and chain conformations of these polypeptide derivatives investigated by titration and circular dichroism analyses were found to depend on block ratio, molecular weight, and zwitterionic groups. Zwitterionic, amphiphilic diblock copolypeptide derivatives can form self-assemblies with sizes ranged between 100 and 400 nm based on dynamic light scattering analysis. Zeta potential measurements revealed the charge carried by the self-assemblies depending on solution pH value and betaine groups. Moreover, the protein adsorption on these zwitterionic polypeptides were studied in order to evaluate their use as non-fouling protein/drug encapsulants or carriers.
1. Yan, B.; Li, B.; Kunecke, F.; Gu, Z.; Guo, L., Polypyrrole-Based Implantable Electroactive Pump for Controlled Drug Microinjection. ACS Applied Materials & Interfaces 2015, 7 (27), 14563-14568.
2. Li, Y.; Wu, H.; Yang, X.; Jia, M.; Li, Y.; Huang, Y.; Lin, J.; Wu, S.; Hou, Z., Mitomycin C-Soybean Phosphatidylcholine Complex-Loaded Self-Assembled PEG-Lipid-PLA Hybrid Nanoparticles for Targeted Drug Delivery and Dual-Controlled Drug Release. Molecular Pharmaceutics 2014, 11 (8), 2915-2927.
3. Xu, C.; Huang, Y.; Wu, J.; Tang, L.; Hong, Y., Triggerable Degradation of Polyurethanes for Tissue Engineering Applications. ACS Applied Materials & Interfaces 2015, 7 (36), 20377-20388.
4. Wang, G.; Babadağli, M. E.; Uludağ, H., Bisphosphonate-Derivatized Liposomes to Control Drug Release from Collagen/Hydroxyapatite Scaffolds. Molecular Pharmaceutics 2011, 8 (4), 1025-1034.
5. Lin, M.; Wang, D.; Liu, S.; Huang, T.; Sun, B.; Cui, Y.; Zhang, D.; Sun, H.; Zhang, H.; Sun, H.; Yang, B., Cupreous Complex-Loaded Chitosan Nanoparticles for Photothermal Therapy and Chemotherapy of Oral Epithelial Carcinoma. ACS Applied Materials & Interfaces 2015, 7 (37), 20801-20812.
6. Quadir, M. A.; Morton, S. W.; Deng, Z. J.; Shopsowitz, K. E.; Murphy, R. P.; Epps, T. H.; Hammond, P. T., PEG–Polypeptide Block Copolymers as pH-Responsive Endosome-Solubilizing Drug Nanocarriers. Molecular Pharmaceutics 2014, 11 (7), 2420-2430.
7. De, B.; Gupta, K.; Mandal, M.; Karak, N., Biodegradable Hyperbranched Epoxy from Castor Oil-Based Hyperbranched Polyester Polyol. ACS Sustainable Chemistry & Engineering 2014, 2 (3), 445-453.
8. (a) Ige, O. O.; Umoru, L. E.; Aribo, S., Natural Products: A Minefield of Biomaterials. ISRN Materials Science 2012, 2012, 20; (b) Baillargeon, A. L.; Mequanint, K., Biodegradable Polyphosphazene Biomaterials for Tissue Engineering and Delivery of Therapeutics. BioMed Research International 2014, 2014, 16.
9. Lingelbach, K.; Joiner, K. A., The parasitophorous vacuole membrane surrounding Plasmodium and Toxoplasma: an unusual compartment in infected cells. Journal of Cell Science 1998, 111 (11), 1467-1475.
10. Navarro, G.; Pan, J.; Torchilin, V. P., Micelle-like Nanoparticles as Carriers for DNA and siRNA. Molecular Pharmaceutics 2015, 12 (2), 301-313.
11. Angelova, A.; Angelov, B.; Mutafchieva, R.; Lesieur, S.; Couvreur, P., Self-Assembled Multicompartment Liquid Crystalline Lipid Carriers for Protein, Peptide, and Nucleic Acid Drug Delivery. Accounts of Chemical Research 2011, 44 (2), 147-156.
12. Buzea, C.; Pacheco, I.; Robbie, K., Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2 (4), MR17-MR71.
13. Thompson, S. E.; Parthasarathy, S., Moore's law: the future of Si microelectronics. Materials Today 2006, 9 (6), 20-25.
14. Hafner, J. H.; Cheung, C. L.; Woolley, A. T.; Lieber, C. M., Structural and functional imaging with carbon nanotube AFM probes. Progress in Biophysics and Molecular Biology 2001, 77 (1), 73-110.
15. Miao, Z.; Carroll, K. C.; Brusseau, M. L., Characterization and quantification of groundwater sulfate sources at a mining site in an arid climate: The Monument Valley site in Arizona, USA. Journal of hydrology 2013, 504, 207-215.
16. Whitesides, G. M.; Laibinis, P. E., Wet chemical approaches to the characterization of organic surfaces: self-assembled monolayers, wetting, and the physical-organic chemistry of the solid-liquid interface. Langmuir 1990, 6 (1), 87-96.
17. (a) Steed;, J. W.; Atwood, J. L., Supramolecular Chemistry. Wiley: New York: 2000; (b) Lehn, J. M., Cryptates: inclusion complexes of macropolycyclic receptor molecules. Pure and Applied Chemistry 1978, 50 (9-10), 871–892.
18. Lehn, J. M., Supramolecular Chemistry:Concept and Perspectives Wiley-VCH Verlag GmbH & Co. KGaA: 2006.
19. Deming, T. J., Facile synthesis of block copolypeptides of defined architecture. Nature 1997, 390 (6658), 386-389.
20. Kataoka, K.; Harada, A.; Nagasaki, Y., Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced Drug Delivery Reviews 2001, 47 (1), 113-131.
21. Zhuang, J.; Gordon, M. R.; Ventura, J.; Li, L.; Thayumanavan, S., Multi-stimuli responsive macromolecules and their assemblies. Chemical Society Reviews 2013, 42 (17), 7421-7435.
22. Gao, W.; Chan, J. M.; Farokhzad, O. C., pH-Responsive Nanoparticles for Drug Delivery. Molecular Pharmaceutics 2010, 7 (6), 1913-1920.
23. Yang, J.; Chen, H.; Xiao, S.; Shen, M.; Chen, F.; Fan, P.; Zhong, M.; Zheng, J., Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties. Langmuir 2015, 31 (33), 9125-9133.
24. Xu, W.; Choi, I.; Plamper, F. A.; Synatschke, C. V.; Müller, A. H. E.; Melnichenko, Y. B.; Tsukruk, V. V., Thermo-Induced Limited Aggregation of Responsive Star Polyelectrolytes. Macromolecules 2014, 47 (6), 2112-2121.
25. (a) Lavasanifar, A.; Samuel, J.; Kwon, G. S., Poly(ethylene oxide)-block-poly(l-amino acid) micelles for drug delivery. Advanced Drug Delivery Reviews 2002, 54 (2), 169-190; (b) Bae, Y.; Kataoka, K., Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Advanced Drug Delivery Reviews 2009, 61 (10), 768-784.
26. (a) Zhang, Z.; Chen, S.; Jiang, S., Dual-Functional Biomimetic Materials: Nonfouling Poly(carboxybetaine) with Active Functional Groups for Protein Immobilization. Biomacromolecules 2006, 7 (12), 3311-3315; (b) Kostina, N. Y.; Rodriguez-Emmenegger, C.; Houska, M.; Brynda, E.; Michálek, J., Non-fouling Hydrogels of 2-Hydroxyethyl Methacrylate and Zwitterionic Carboxybetaine (Meth)acrylamides. Biomacromolecules 2012, 13 (12), 4164-4170; (c) Matsuoka, H.; Yamakawa, Y.; Ghosh, A.; Saruwatari, Y., Nanostructure and Salt Effect of Zwitterionic Carboxybetaine Brush at the Air/Water Interface. Langmuir 2015, 31 (17), 4827-4836; (d) Wang, G.; Wang, L.; Lin, W.; Wang, Z.; Zhang, J.; Ji, F.; Ma, G.; Yuan, Z.; Chen, S., Development of Robust and Recoverable Ultralow-Fouling Coatings Based on Poly(carboxybetaine) Ester Analogue. ACS Applied Materials & Interfaces 2015, 7 (31), 16938-16945.
27. Kudaibergenov, S. E., Polyampholytes: synthesis, characterization and application. New York ; Kluwer Academic/Plenum Publi: 2002.
28. (a) Sinclair, A.; Bai, T.; Carr, L. R.; Ella-Menye, J.-R.; Zhang, L.; Jiang, S., Engineering Buffering and Hydrolytic or Photolabile Charge Shifting in a Polycarboxybetaine Ester Gene Delivery Platform. Biomacromolecules 2013, 14 (5), 1587-1593; (b) Zhang, L.; Cao, Z.; Bai, T.; Carr, L.; Ella-Menye, J.-R.; Irvin, C.; Ratner, B. D.; Jiang, S., Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat Biotech 2013, 31 (6), 553-556; (c) Brault, N. D.; Sundaram, H. S.; Huang, C.-J.; Li, Y.; Yu, Q.; Jiang, S., Two-Layer Architecture Using Atom Transfer Radical Polymerization for Enhanced Sensing and Detection in Complex Media. Biomacromolecules 2012, 13 (12), 4049-4056; (d) Lalani, R.; Liu, L., Electrospun Zwitterionic Poly(Sulfobetaine Methacrylate) for Nonadherent, Superabsorbent, and Antimicrobial Wound Dressing Applications. Biomacromolecules 2012, 13 (6), 1853-1863.
29. Kolb, H. C.; Finn, M. G.; Sharpless, K. B., Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition 2001, 40 (11), 2004-2021.
30. Binder, W. H.; Sachsenhofer, R., ‘Click’ Chemistry in Polymer and Materials Science. Macromolecular Rapid Communications 2007, 28 (1), 15-54.
31. Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Fréchet, J. M. J.; Sharpless, K. B.; Fokin, V. V., Efficiency and Fidelity in a Click-Chemistry Route to Triazole Dendrimers by the Copper(I)-Catalyzed Ligation of Azides and Alkynes. Angewandte Chemie International Edition 2004, 43 (30), 3928-3932.
32. (a) Lowe, A. B., Thiol-ene "click" reactions and recent applications in polymer and materials synthesis. Polymer Chemistry 2010, 1 (1), 17-36; (b) Nilsson, C.; Simpson, N.; Malkoch, M.; Johansson, M.; Malmström, E., Synthesis and thiol–ene photopolymerization of allyl-ether functionalized dendrimers. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46 (4), 1339-1348.
33. Hoyle, C. E.; Bowman, C. N., Thiol–Ene Click Chemistry. Angewandte Chemie International Edition 2010, 49 (9), 1540-1573.
34. Nair, D. P.; Podgórski, M.; Chatani, S.; Gong, T.; Xi, W.; Fenoli, C. R.; Bowman, C. N., The Thiol-Michael Addition Click Reaction: A Powerful and Widely Used Tool in Materials Chemistry. Chemistry of Materials 2014, 26 (1), 724-744.
35. Yang, R.; Xu, J.; Ozaydin-Ince, G.; Wong, S. Y.; Gleason, K. K., Surface-Tethered Zwitterionic Ultrathin Antifouling Coatings on Reverse Osmosis Membranes by Initiated Chemical Vapor Deposition. Chemistry of Materials 2011, 23 (5), 1263-1272.
36. Lewis, W. G.; Green, L. G.; Grynszpan, F.; Radić, Z.; Carlier, P. R.; Taylor, P.; Finn, M. G.; Sharpless, K. B., Click Chemistry In Situ: Acetylcholinesterase as a Reaction Vessel for the Selective Assembly of a Femtomolar Inhibitor from an Array of Building Blocks. Angewandte Chemie International Edition 2002, 41 (6), 1053-1057.
37. Matsuoka, H.; Maeda, S. i.; Kaewsaiha, P.; Matsumoto, K., Micellization of Non-Surface-Active Diblock Copolymers in Water. Special Characteristics of Poly(styrene)-block-Poly(styrenesulfonate). Langmuir 2004, 20 (18), 7412-7421.
38. Kricheldorf, H. R., Polypeptides and 100 Years of Chemistry of α-Amino Acid N-Carboxyanhydrides. Angewandte Chemie International Edition 2006, 45 (35), 5752-5784.
39. Leuchs, H., Ueber die Glycin-carbonsäure. Berichte der deutschen chemischen Gesellschaft 1906, 39 (1), 857-861.
40. Daly, W. H.; Poché, D., The preparation of N-carboxyanhydrides of α-amino acids using bis(trichloromethyl)carbonate. Tetrahedron Letters 1988, 29 (46), 5859-5862.
41. (a) Casolaro, M.; Bottari, S.; Cappelli, A.; Mendichi, R.; Ito, Y., Vinyl Polymers Based on l-Histidine Residues. Part 1. The Thermodynamics of Poly(ampholyte)s in the Free and in the Cross-Linked Gel Form. Biomacromolecules 2004, 5 (4), 1325-1332; (b) Casolaro, M.; Bottari, S.; Ito, Y., Vinyl Polymers Based on l-Histidine Residues. Part 2. Swelling and Electric Behavior of Smart Poly(ampholyte) Hydrogels for Biomedical Applications. Biomacromolecules 2006, 7 (5), 1439-1448.
42. Banerjee, S.; Maji, T.; Paira, T. K.; Mandal, T. K., Amino-Acid-Based Zwitterionic Polymer and Its Cu(II)-Induced Aggregation into Nanostructures: A Template for CuS and CuO Nanoparticles. Macromolecular Rapid Communications 2013, 34 (18), 1480-1486.
43. (a) Parrish, B.; Breitenkamp, R. B.; Emrick, T., PEG- and Peptide-Grafted Aliphatic Polyesters by Click Chemistry. Journal of the American Chemical Society 2005, 127 (20), 7404-7410; (b) Engler, A. C.; Lee, H.-i.; Hammond, P. T., Highly Efficient “Grafting onto” a Polypeptide Backbone Using Click Chemistry. Angewandte Chemie International Edition 2009, 48 (49), 9334-9338.
44. (a) Lutz, J.-F.; Börner, H. G.; Weichenhan, K., Combining ATRP and “Click” Chemistry: a Promising Platform toward Functional Biocompatible Polymers and Polymer Bioconjugates. Macromolecules 2006, 39 (19), 6376-6383; (b) Jiang, X.; Lok, M. C.; Hennink, W. E., Degradable-Brushed pHEMA–pDMAEMA Synthesized via ATRP and Click Chemistry for Gene Delivery. Bioconjugate Chemistry 2007, 18 (6), 2077-2084.
45. (a) Quemener, D.; Davis, T. P.; Barner-Kowollik, C.; Stenzel, M. H., RAFT and click chemistry: A versatile approach to well-defined block copolymers. Chemical Communications 2006, (48), 5051-5053; (b) Gondi, S. R.; Vogt, A. P.; Sumerlin, B. S., Versatile Pathway to Functional Telechelics via RAFT Polymerization and Click Chemistry. Macromolecules 2007, 40 (3), 474-481.
46. Tang, H.; Zhang, D., Multi-functionalization of helical block copoly([small alpha]-peptide)s by orthogonal chemistry. Polymer Chemistry 2011, 2 (7), 1542-1551.
47. (a) Devaraj, N. K.; Dinolfo, P. H.; Chidsey, C. E. D.; Collman, J. P., Selective Functionalization of Independently Addressed Microelectrodes by Electrochemical Activation and Deactivation of a Coupling Catalyst. Journal of the American Chemical Society 2006, 128 (6), 1794-1795; (b) Link, A. J.; Tirrell, D. A., Cell Surface Labeling of Escherichia coli via Copper(I)-Catalyzed [3+2] Cycloaddition. Journal of the American Chemical Society 2003, 125 (37), 11164-11165; (c) Collman, J. P.; Devaraj, N. K.; Chidsey, C. E. D., “Clicking” Functionality onto Electrode Surfaces. Langmuir 2004, 20 (4), 1051-1053.
48. Manetsch, R.; Krasiński, A.; Radić, Z.; Raushel, J.; Taylor, P.; Sharpless, K. B.; Kolb, H. C., In Situ Click Chemistry: Enzyme Inhibitors Made to Their Own Specifications. Journal of the American Chemical Society 2004, 126 (40), 12809-12818.
49. (a) Leduc, E. H.; Holt, S. J., Hydroxypropyl Methacrylate, A New Water-Miscible Embedding Medium for Electron Microscopy. The Journal of Cell Biology 1965, 26 (1), 137-155; (b) Lewis, A. L.; Cumming, Z. L.; Goreish, H. H.; Kirkwood, L. C.; Tolhurst, L. A.; Stratford, P. W., Crosslinkable coatings from phosphorylcholine-based polymers. Biomaterials 2001, 22 (2), 99-111.
50. (a) Mrabet, B.; Nguyen, M. N.; Majbri, A.; Mahouche, S.; Turmine, M.; Bakhrouf, A.; Chehimi, M. M., Anti-fouling poly(2-hydoxyethyl methacrylate) surface coatings with specific bacteria recognition capabilities. Surface Science 2009, 603 (16), 2422-2429; (b) Yoshikawa, C.; Goto, A.; Tsujii, Y.; Fukuda, T.; Kimura, T.; Yamamoto, K.; Kishida, A., Protein Repellency of Well-Defined, Concentrated Poly(2-hydroxyethyl methacrylate) Brushes by the Size-Exclusion Effect. Macromolecules 2006, 39 (6), 2284-2290.
51. (a) Ma, H.; Hyun, J.; Stiller, P.; Chilkoti, A., “Non-Fouling” Oligo(ethylene glycol)- Functionalized Polymer Brushes Synthesized by Surface-Initiated Atom Transfer Radical Polymerization. Advanced Materials 2004, 16 (4), 338-341; (b) Zheng, J.; Li, L.; Tsao, H.-K.; Sheng, Y.-J.; Chen, S.; Jiang, S., Strong Repulsive Forces between Protein and Oligo (Ethylene Glycol) Self-Assembled Monolayers: A Molecular Simulation Study. Biophysical Journal 2005, 89 (1), 158-166.
52. Zheng, J.; Li, L.; Chen, S.; Jiang, S., Molecular Simulation Study of Water Interactions with Oligo (Ethylene Glycol)-Terminated Alkanethiol Self-Assembled Monolayers. Langmuir 2004, 20 (20), 8931-8938.
53. (a) Ostuni, E.; Chapman, R. G.; Holmlin, R. E.; Takayama, S.; Whitesides, G. M., A Survey of Structure−Property Relationships of Surfaces that Resist the Adsorption of Protein. Langmuir 2001, 17 (18), 5605-5620; (b) Shen, M.; Martinson, L.; Wagner, M. S.; Castner, D. G.; Ratner, B. D.; Horbett, T. A., PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies. Journal of Biomaterials Science, Polymer Edition 2002, 13 (4), 367-390; (c) Luk, Y.-Y.; Kato, M.; Mrksich, M., Self-Assembled Monolayers of Alkanethiolates Presenting Mannitol Groups Are Inert to Protein Adsorption and Cell Attachment. Langmuir 2000, 16 (24), 9604-9608.
54. Leckband, D.; Sheth, S.; Halperin, A., Grafted poly(ethylene oxide) brushes as nonfouling surface coatings. Journal of Biomaterials Science, Polymer Edition 1999, 10 (10), 1125-1147.
55. Zwaal, R. F. A.; Schroit, A. J., Pathophysiologic Implications of Membrane Phospholipid Asymmetry in Blood Cells. Blood 1997, 89 (4), 1121-1132.
56. 門磨義則; 中林宣男; 増原英一; 山内淳一, ホスホリルコリン基を有するポリマーの合成と溶血性. 高分子論文集 1978, 35 (7), 423-427.
57. Ishihara, K.; Ueda, T.; Nakabayashi, N., Preparation of Phospholipid Polylners and Their Properties as Polymer Hydrogel Membranes. Polym J 1990, 22 (5), 355-360.
58. (a) Ishihara, K.; Tsuji, T.; Kurosaki, T.; Nakabayashi, N., Hemocompatibility on graft copolymers composed of poly(2-methacryloyloxyethyl phosphorylcholine) side chain and poly(n-butyl methacrylate) backbone. Journal of Biomedical Materials Research 1994, 28 (2), 225-232; (b) Watanabe, J.; Eriguchi, T.; Ishihara, K., Cell Adhesion and Morphology in Porous Scaffold Based on Enantiomeric Poly(lactic acid) Graft-type Phospholipid Polymers. Biomacromolecules 2002, 3 (6), 1375-1383; (c) Iwasaki, Y.; Ishihara, K., Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. Science and Technology of Advanced Materials 2012, 13 (6), 064101.
59. Nyyssölä, A. Pathways of glycine betaine synthesis in two extremely halophilic bacteria, Actinopolyspora halophila and Ectothiorhodospira halochloris. Helsinki University of Technology, 2001.
60. (a) Ladd, J.; Zhang, Z.; Chen, S.; Hower, J. C.; Jiang, S., Zwitterionic Polymers Exhibiting High Resistance to Nonspecific Protein Adsorption from Human Serum and Plasma. Biomacromolecules 2008, 9 (5), 1357-1361; (b) Vaisocherová, H.; Yang, W.; Zhang, Z.; Cao, Z.; Cheng, G.; Piliarik, M.; Homola, J.; Jiang, S., Ultralow Fouling and Functionalizable Surface Chemistry Based on a Zwitterionic Polymer Enabling Sensitive and Specific Protein Detection in Undiluted Blood Plasma. Analytical Chemistry 2008, 80 (20), 7894-7901.
61. Yang, W.; Xue, H.; Li, W.; Zhang, J.; Jiang, S., Pursuing “Zero” Protein Adsorption of Poly(carboxybetaine) from Undiluted Blood Serum and Plasma. Langmuir 2009, 25 (19), 11911-11916.
62. Jiang, S.; Cao, Z., Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Advanced Materials 2010, 22 (9), 920-932.
63. (a) Zhang, Z.; Chao, T.; Chen, S.; Jiang, S., Superlow Fouling Sulfobetaine and Carboxybetaine Polymers on Glass Slides. Langmuir 2006, 22 (24), 10072-10077; (b) Zhang, Z.; Chao, T.; Liu, L.; Cheng, G.; Ratner, B. D.; Jiang, S., Zwitterionic Hydrogels: an in Vivo Implantation Study. Journal of Biomaterials Science, Polymer Edition 2009, 20 (13), 1845-1859.
64. Chang, Y.; Chen, S.; Zhang, Z.; Jiang, S., Highly Protein-Resistant Coatings from Well-Defined Diblock Copolymers Containing Sulfobetaines. Langmuir 2006, 22 (5), 2222-2226.
65. (a) Chang, Y.; Shu, S.-H.; Shih, Y.-J.; Chu, C.-W.; Ruaan, R.-C.; Chen, W.-Y., Hemocompatible Mixed-Charge Copolymer Brushes of Pseudozwitterionic Surfaces Resistant to Nonspecific Plasma Protein Fouling. Langmuir 2010, 26 (5), 3522-3530; (b) Chang, Y.; Chang, W.-J.; Shih, Y.-J.; Wei, T.-C.; Hsiue, G.-H., Zwitterionic Sulfobetaine-Grafted Poly(vinylidene fluoride) Membrane with Highly Effective Blood Compatibility via Atmospheric Plasma-Induced Surface Copolymerization. ACS Applied Materials & Interfaces 2011, 3 (4), 1228-1237.
66. Ma, C.; Zhou, H.; Wu, B.; Zhang, G., Preparation of Polyurethane with Zwitterionic Side Chains and Their Protein Resistance. ACS Applied Materials & Interfaces 2011, 3 (2), 455-461.
67. Shao, Q.; Mi, L.; Han, X.; Bai, T.; Liu, S.; Li, Y.; Jiang, S., Differences in Cationic and Anionic Charge Densities Dictate Zwitterionic Associations and Stimuli Responses. The Journal of Physical Chemistry B 2014, 118 (24), 6956-6962.
68. Shao, Q.; Jiang, S., Influence of Charged Groups on the Properties of Zwitterionic Moieties: A Molecular Simulation Study. The Journal of Physical Chemistry B 2014, 118 (27), 7630-7637.
69. Helm, M. D.; Da Silva, M.; Sucunza, D.; Findley, T. J. K.; Procter, D. J., A Dialdehyde Cyclization Cascade: An Approach to Pleuromutilin. Angewandte Chemie International Edition 2009, 48 (49), 9315-9317.
70. Guthrie, J. P., Hydrolysis of esters of oxy acids: pKa values for strong acids; Brønsted relationship for attack of water at methyl; free energies of hydrolysis of esters of oxy acids; and a linear relationship between free energy of hydrolysis and pKa holding over a range of 20 pK units. Canadian Journal of Chemistry 1978, 56 (17), 2342-2354.
71. Section 3: Physical Constants of Organic Compounds. In Handbook of Chemistry and Physics, 74th ed.; CRC Press: 1994; p 45.
72. (a) Hwang, J.; Deming, T. J., Methylated Mono- and Di(ethylene glycol)-Functionalized β-Sheet Forming Polypeptides. Biomacromolecules 2001, 2 (1), 17-21; (b) Toniolo, C.; Polese, A.; Formaggio, F.; Crisma, M.; Kamphuis, J., Circular Dichroism Spectrum of a Peptide 310-Helix. Journal of the American Chemical Society 1996, 118 (11), 2744-2745.
73. Huang, Y.-C.; Jan, J.-S., Carboxylmethyl chitosan-graft-poly(γ-benzyl-l-glutamate) glycopeptides: Synthesis and particle formation as encapsulants. Polymer 2014, 55 (2), 540-549.
74. Walenta, E., Small angle x-ray scattering. Von O. GLATTER und O. KRATKY. London: Academic Press Inc. Ltd. 1982. ISBN 0-12-286280-5. X, 515 Seiten, geb. £ 43,60; US $ 81.00. Acta Polymerica 1985, 36 (5), 296-296.
75. Sin, M.-C.; Chen, S.-H.; Chang, Y., Hemocompatibility of zwitterionic interfaces and membranes. Polym J 2014, 46 (8), 436-443.
76. Chou, Y.-N.; Wen, T.-C.; Chang, Y., Zwitterionic surface grafting of epoxylated sulfobetaine copolymers for the development of stealth biomaterial interfaces. Acta Biomaterialia.
77. Venault, A.; Ye, C.-C.; Lin, Y.-C.; Tsai, C.-W.; Jhong, J.-F.; Ruaan, R.-C.; Higuchi, A.; Chinnathambi, A.; Ho, H.-T.; Chang, Y., Zwitterionic fibrous polypropylene assembled with amphiphatic carboxybetaine copolymers for hemocompatible blood filtration. Acta Biomaterialia.
78. Chou, Y.-N.; Chang, Y.; Wen, T.-C., Applying Thermosettable Zwitterionic Copolymers as General Fouling-Resistant and Thermal-Tolerant Biomaterial Interfaces. ACS Applied Materials & Interfaces 2015, 7 (19), 10096-10107.
79. Guo, J.; Xu, Q.; Zheng, Z.; Zhou, S.; Mao, H.; Wang, B.; Yan, F., Intrinsically Antibacterial Poly(ionic liquid) Membranes: The Synergistic Effect of Anions. ACS Macro Letters 2015, 4 (10), 1094-1098.