| 研究生: |
藍啟軒 Lan, Ci-Syuan |
|---|---|
| 論文名稱: |
探討鉀-聚(庚嗪醯亞胺)結構中氰胺基對其光催化性能的作用 Investigate the role of the Cyanamide group within the Potassium-Poly(Heptazine Imide) Structure on its Photocatalytic Performance |
| 指導教授: |
劉詠熙
Lau, Vincent Wing-Hei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2024 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 鉀-聚(庚嗪醯亞胺) 、氰胺基 、光催化性能 |
| 外文關鍵詞: | Potassium Poly(heptazine imide), Cyanamide group, Photocatalytic Performance |
| 相關次數: | 點閱:152 下載:30 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Potassium Poly(heptazine imide) (K-PHI) 因其低毒性和高穩定性而被視為具有發展潛力的光催化劑。然而,由於K-PHI較低的結晶性以及結構的不確定性,大幅提高了研究其光物理性質挑戰性,也因此阻礙了提高其光催化效率的研究。近期的文獻表明,結構中的氰胺基對增強光催化性能極其重要。在文獻中使用硫氰酸鉀 (KSCN) 的離子熱合成 (ionothermal synthesis) 使得該官能基存在於結構的邊緣的同時還形成了點缺陷存在於結構中,導致其光催化性能與該官能基之間的相關性變得更加複雜難以釐清。
本研究旨在通過改善 K-PHI 的結晶性並系統性地增加結構中的氰胺基來探討這一關係。在論文中我們採用紅外光譜 (FT-IR) 來評估氰胺基在K-PHI結構中的相對量,並將具有特定氰胺基相對量的 K-PHI用於後續苯甲醇的光氧化反應中。為更直接證明該官能基與光催化性能間的關係,該反應將在不使用氧化劑的溫和調進下進行反應以此來簡化反應實驗中複雜的變因。論文中所使用的紫外-可見光光譜儀 (UV-Vis) 則被用於監測反應進程,並根據所得的苯甲醛濃度計算並比較各別的反應速率常數。實驗結果表明,含有更多氰胺基的 K-PHI 表現出更高的反應速率。此外在氮氣吸脫附實驗中所得的比表面積數據證明,反應速率的提高與K-PHI的比表面積無關,這表明K-PHI的催化性能的提高主要來自於結構中存在的氰胺基。
The unclear structure of potassium poly(heptazine imide) (K-PHI) has hindered improvements in catalytic efficiency. Investigating its photophysical properties is challenging due to its poor crystallinity. Recent literature indicates that the cyanamide group within the structure is crucial for enhancing photocatalytic performance. However, ionothermal synthesis using KSCN results in this functional group not only existing at the edge of the structure but also forming a point defect, complicating the correlation between photocatalytic performance and this functional group. This research aims to explore this relationship by improving the crystallinity of K-PHI and systematically increasing the cyanamide groups within the structure. FT-IR spectroscopy was conducted to assess the relative intensity of the cyanamide group in the spectrum. To narrow down the factors influencing the photocatalytic reaction, K-PHI with specific amounts of cyanamide groups will be applied to the photooxidation of benzyl alcohol under mild conditions, without the use of oxidizing agents. We will use UV-Vis spectroscopy to monitor the reaction process and compare the rate constants. The results demonstrate that K-PHI with more cyanamide groups exhibits an increased reaction rate. Furthermore, nitrogen adsorption-desorption studies confirm that the enhancement in reaction rate is not related to surface area, indicating that the improvement in performance is solely due to the influence of the cyanamide groups within the material's structure.
1. Gisbertz, S.; Pieber, B. Heterogeneous Photocatalysis in Organic Synthesis. Chemphotochem 2020, 4 (7), 456-475.
2. Doblinger, M.; Lotsch, B. V.; Wack, J.; Thun, J.; Senker, J.; Schnick, W. Structure elucidation of polyheptazine imide by electron diffraction-a templated 2D carbon nitride network. Chemical Communications 2009, (12), 1541-1543.
3. Chen, Z. P.; Savateev, A.; Pronkin, S.; Papaefthimiou, V.; Wolff, C.; Willinger, M. G.; Willinger, E.; Neher, D.; Antonietti, M.; Dontsova, D. "The Easier the Better" Preparation of Efficient Photocatalysts-Metastable Poly(heptazine imide) Salts. Advanced Materials 2017, 29 (32), 1700555.
4. Savateev, A.; Pronkin, S.; Epping, J. D.; Willinger, M. G.; Wolff, C.; Neher, D.; Antonietti, M.; Dontsova, D. Potassium Poly(heptazine imides) from Aminotetrazoles: Shifting Band Gaps of Carbon Nitride-like Materials for More Efficient Solar Hydrogen and Oxygen Evolution. Chemcatchem 2017, 9 (1), 167-174.
5. Mun, S. J.; Park, S. J. Graphitic Carbon Nitride Materials for Photocatalytic Hydrogen Production via Water Splitting: A Short Review. Catalysts 2019, 9 (10), 805.
6. Ullah, R.; Dutta, J. Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. Journal of Hazardous Materials 2008, 156 (1-3), 194-200.
7. Kang, X. L.; Liu, S. H.; Dai, Z. D.; He, Y. P.; Song, X. Z.; Tan, Z. Q. Titanium Dioxide: From Engineering to Applications. Catalysts 2019, 9 (2), 191.
8. Imamura, K.; Okubo, Y.; Ito, T.; Tanaka, A.; Hashimoto, K.; Kominami, H. Photocatalytic hydrogenation of alkenes to alkanes in alcoholic suspensions of palladium-loaded titanium(IV) oxide without the use of hydrogen gas. Rsc Advances 2014, 4 (38), 19883-19886.
9. Contreras, D.; Melin, V.; Márquez, K.; Pérez-González, G.; Mansilla, H. D.; Pecchi, G.; Henríquez, A. Selective oxidation of cyclohexane to cyclohexanol by BiOI under visible light: Role of the ratio (110)/(001) facet. Applied Catalysis B-Environmental 2019, 251, 17-24.
10. Christoforidis, K. C.; Fornasiero, P. Photocatalytic Hydrogen Production: A Rift into the Future Energy Supply. Chemcatchem 2017, 9 (9), 1523-1544.
11. Kroke, E. gt-C3N4—The First Stable Binary Carbon(IV) Nitride. Angewandte Chemie-International Edition 2014, 53 (42), 11134-11136.
12. Lau, V. W. H.; Lotsch, B. V. A Tour-Guide through Carbon Nitride-Land: Structure- and Dimensionality-Dependent Properties for Photo(Electro)Chemical Energy Conversion and Storage. Advanced Energy Materials 2022, 12 (4), 2101078.
13. Gentile, G.; Marchi, M.; Melchionna, M.; Fornasiero, P.; Prato, M.; Filippini, G. Use of Carbon Nitrides as Photoactive Supports in Single-Atom Heterogeneous Catalysis for Synthetic Purposes. European Journal of Organic Chemistry 2022, 2022 (37), e202200944.
14. Lotsch, B. V.; Doblinger, M.; Sehnert, J.; Seyfarth, L.; Senker, J.; Oeckler, O.; Schnick, W. Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations-structural characterization of a carbon nitride polymer. Chemistry 2007, 13 (17), 4969-4980.
15. Botari, T.; Huhn, W. P.; Lau, V. W. H.; Lotsch, B. V.; Blum, V. Thermodynamic Equilibria in Carbon Nitride Photocatalyst Materials and Conditions for the Existence of Graphitic Carbon Nitride g-C3N4. Chemistry of Materials 2017, 29 (10), 4445-4453.
16. Merschjann, C.; Tschierlei, S.; Tyborski, T.; Kailasam, K.; Orthmann, S.; Hollmann, D.; Schedel-Niedrig, T.; Thomas, A.; Lochbrunner, S. Complementing Graphenes: 1D Interplanar Charge Transport in Polymeric Graphitic Carbon Nitrides. Advanced Materials 2015, 27 (48), 7993-7999.
17. Melissen, S.; Le Bahers, T.; Steinmann, S. N.; Sautet, P. Relationship between Carbon Nitride Structure and Exciton Binding Energies: A DFT Perspective. Journal of Physical Chemistry C 2015, 119 (45), 25188-25196.
18. Huda, M. N.; Turner, J. A. Morphology-dependent optical absorption and conduction properties of photoelectrochemical photocatalysts for H2 production: A case study. Journal of Applied Physics 2010, 107 (12), 123703.
19. Fina, F.; Callear, S. K.; Carins, G. M.; Irvine, J. T. S. Structural Investigation of Graphitic Carbon Nitride via XRD and Neutron Diffraction. Chemistry of Materials 2015, 27 (7), 2612-2618.
20. Akaike, K.; Aoyama, K.; Dekubo, S.; Onishi, A.; Kanai, K. Characterizing Electronic Structure near the Energy Gap of Graphitic Carbon Nitride Based on Rational Interpretation of Chemical Analysis. Chemistry of Materials 2018, 30 (7), 2341-2352.
21. Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials 2009, 8 (1), 76-80.
22. Chen, Y. X.; Zhong, W.; Chen, F.; Wang, P.; Fan, J. J.; Yu, H. G. Photoinduced self-stability mechanism of CdS photocatalyst: The dependence of photocorrosion and H2-evolution performance. Journal of Materials Science & Technology 2022, 121, 19-27.
23. Savateev, A.; Ghosh, I.; König, B.; Antonietti, M. Photoredox Catalytic Organic Transformations using Heterogeneous Carbon Nitrides. Angewandte Chemie-International Edition 2018, 57 (49), 15936-15947.
24. Meyer, A. U.; Lau, V. W. H.; König, B.; Lotsch, B. V. Photocatalytic Oxidation of Sulfinates to Vinyl Sulfones with Cyanamide-Functionalised Carbon Nitride. European Journal of Organic Chemistry 2017, 2017 (15), 2179-2185.
25. Vijeta, A.; Casadevall, C.; Reisner, E. An Integrated Carbon Nitride-Nickel Photocatalyst for the Amination of Aryl Halides Using Sodium Azide. Angewandte Chemie-International Edition 2022, 61 (24), e202203176.
26. Li, X. H.; Baar, M.; Blechert, S.; Antonietti, M. Facilitating room-temperature Suzuki coupling reaction with light: Mott-Schottky photocatalyst for C-C-coupling. Scientific Reports 2013, 3.
27. Xiong, L. Q.; Tang, J. W. Strategies and Challenges on Selectivity of Photocatalytic Oxidation of Organic Substances. Advanced Energy Materials 2021, 11 (8), 2003216.
28. Liu, A. Y.; Cohen, M. L. Prediction of New Low Compressibility Solids. Science 1989, 245 (4920), 841-842.
29. Ortega, J.; Sankey, O. F. Relative Stability of Hexagonal and Planar Structures of Hypothetical C3N4 Solids. Physical Review B 1995, 51 (4), 2624-2627.
30. Kroke, E.; Schwarz, M.; Horath-Bordon, E.; Kroll, P.; Noll, B.; Norman, A. D. Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures. New Journal of Chemistry 2002, 26 (5), 508-512.
31. Lotsch, B. V.; Schnick, W. New light on an old story: Formation of melam during thermal condensation of melamine. Chemistry-a European Journal 2007, 13 (17), 4956-4968.
32. Wirnhier, E.; Mesch, M. B.; Senker, J.; Schnick, W. Formation and Characterization of Melam, Melam Hydrate, and a Melam-Melem Adduct. Chemistry – A European Journal 2013, 19 (6), 2041-2049.
33. Bojdys, M. J.; Müller, J. O.; Antonietti, M.; Thomas, A. Ionothermal Synthesis of Crystalline, Condensed, Graphitic Carbon Nitride. Chemistry-a European Journal 2008, 14 (27), 8177-8182.
34. Morris, R. E. Ionothermal synthesis-ionic liquids as functional solvents in the preparation of crystalline materials. Chemical Communications 2009, (21), 2990-2998.
35. Jin, Y. X.; Zheng, D. D.; Fang, Z. P.; Pan, Z. M.; Wang, S. B.; Hou, Y. D.; Savateev, O.; Zhang, Y. F.; Zhang, G. G. Salt-melt synthesis of poly(heptazine imide) in binary alkali metal bromides for enhanced visible-light photocatalytic hydrogen production. Interdisciplinary Materials 2024, 3 (3), 389-399.
36. Xu, Y. S.; Qiu, C. T.; Fan, X.; Xiao, Y. H.; Zhang, G. Q.; Yu, K. Y.; Ju, H. X.; Ling, X.; Zhu, Y. F.; Su, C. L. K+-induced crystallization of polymeric carbon nitride to boost its photocatalytic activity for H2 evolution and hydrogenation of alkenes. Applied Catalysis B-Environmental 2020, 268, 118457.
37. Markushyna, Y.; Lamagni, P.; Teutloff, C.; Catalano, J.; Lock, N.; Zhang, G. G.; Antonietti, M.; Savateev, A. Green radicals of potassium poly(heptazine imide) using light and benzylamine. Journal of Materials Chemistry A 2019, 7 (43), 24771-24775.
38. Schlomberg, H.; Kroger, J.; Savasci, G.; Terban, M. W.; Bette, S.; Moudrakovski, I.; Duppel, V.; Podjaski, F.; Siegel, R.; Senker, J.; et al. Structural Insights into Poly(Heptazine Imides): A Light-Storing Carbon Nitride Material for Dark Photocatalysis. Chemistry of Materials 2019, 31 (18), 7478-7486.
39. Burrow, J. N.; Ciufo, R. A.; Smith, L. A.; Wang, Y.; Calabro, D. C.; Henkelman, G.; Mullins, C. B. Calcium Poly(Heptazine Imide): A Covalent Heptazine Framework for Selective CO2 Adsorption. Acs Nano 2022, 16 (4), 5393-5403.
40. Kröger, J.; Jiménez-Solano, A.; Savasci, G.; Rovó, P.; Moudrakovski, I.; Küster, K.; Schlomberg, H.; Vignolo-González, H. A.; Duppel, V.; Grunenberg, L.; et al. Interfacial Engineering for Improved Photocatalysis in a Charge Storing 2D Carbon Nitride: Melamine Functionalized Poly(heptazine imide). Advanced Energy Materials 2021, 11 (6), 2003016.
41. Miller, T. S.; d'Aleo, A.; Suter, T.; Aliev, A. E.; Sella, A.; McMillan, P. F. Pharaoh's Serpents: New Insights into a Classic Carbon Nitride Material. Zeitschrift Fur Anorganische Und Allgemeine Chemie 2017, 643 (21), 1572-1580.
42. Lau, V. W.-h.; Moudrakovski, I.; Botari, T.; Weinberger, S.; Mesch, M. B.; Duppel, V.; Senker, J.; Blum, V.; Lotsch, B. V. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nature Communications 2016, 7 (1), 12165.
43. Lotsch, B. V.; Schnick, W. Towards novel C-N materials: crystal structures of two polymorphs of guanidinium dicyanamide and their thermal conversion into melamine. New Journal of Chemistry 2004, 28 (9), 1129-1136.
44. Kröger, J.; Jiménez-Solano, A.; Savasci, G.; Lau, V. W. H.; Duppel, V.; Moudrakovski, I.; Küster, K.; Scholz, T.; Gouder, A.; Schreiber, M. L.; et al. Morphology Control in 2D Carbon Nitrides: Impact of Particle Size on Optoelectronic Properties and Photocatalysis. Advanced Functional Materials 2021, 31 (28), 2102468.
45. Yang, S. B.; Gong, Y. J.; Zhang, J. S.; Zhan, L.; Ma, L. L.; Fang, Z. Y.; Vajtai, R.; Wang, X. C.; Ajayan, P. M. Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light. Advanced Materials 2013, 25 (17), 2452-2456.
46. Li, X. B.; Masters, A. F.; Maschmeyer, T. Photocatalytic Hydrogen Evolution from Silica-Templated Polymeric Graphitic Carbon Nitride-Is the Surface Area Important? Chemcatchem 2015, 7 (1), 121-126.
47. Huang, C. F.; Wen, Y. P.; Ma, J.; Dong, D. D.; Shen, Y. F.; Liu, S. Q.; Ma, H. B.; Zhang, Y. J. Unraveling fundamental active units in carbon nitride for photocatalytic oxidation reactions. Nature Communications 2021, 12 (1), 320.
48. Lau, V. W. H.; Mesch, M. B.; Duppel, V.; Blum, V.; Senker, J.; Lotsch, B. V. Low-Molecular-Weight Carbon Nitrides for Solar Hydrogen Evolution. Journal of the American Chemical Society 2015, 137 (3), 1064-1072.
49. Yang, W. X.; Godin, R.; Kasap, H.; Moss, B.; Dong, Y. F.; Hillman, S. A. J.; Steier, L.; Reisner, E.; Durrant, J. R. Electron Accumulation Induces Efficiency Bottleneck for Hydrogen Production in Carbon Nitride Photocatalysts. Journal of the American Chemical Society 2019, 141 (28), 11219-11229.
50. Liu, Y.; Chen, X. C.; Kamali, M.; Rossi, B.; Appels, L.; Dewil, R. Unraveling the Presence and Positions of Nitrogen Defects in Defective g-C3N4 for Improved Organic Photocatalytic Degradation: Insights from Experiments and Theoretical Calculations. Advanced Functional Materials 2024, 34 (40), 2405741.
51. Miller, T. S.; Jorge, A. B.; Suter, T. M.; Sella, A.; Corà, F.; McMillan, P. F. Carbon nitrides: synthesis and characterization of a new class of functional materials. Physical Chemistry Chemical Physics 2017, 19 (24), 15613-15638.
52. Seo, G.; Saito, Y.; Nakamichi, M.; Nakano, K.; Tajima, K.; Kanai, K. Mechanism of charge accumulation of poly(heptazine imide) gel. Scientific Reports 2021, 11 (1), 17833.
53. Nimbalkar, D. B.; Nguyen, V.; Shih, C. Y.; Teng, H. S. Melem-derived poly(heptazine imide) for effective charge transport and photocatalytic reforming of cellulose into H2 and biochemicals under visible light. Applied Catalysis B-Environmental 2022, 316, 121601.
54. Long, B. H.; Ding, Z. X.; Wang, X. C. Carbon Nitride for the Selective Oxidation of Aromatic Alcohols in Water under Visible Light. Chemsuschem 2013, 6 (11), 2074-2078.
55. Pavan, M. J.; Fridman, H.; Segalovich, G.; Shames, A. I.; Lemcoff, N. G.; Mokari, T. Photoxidation of Benzyl Alcohol with Heterogeneous Photocatalysts in the UV Range: The Complex Interplay with the Autoxidative Reaction. Chemcatchem 2018, 10 (12), 2541-2545.
56. Lau, V. W. H.; Yu, V. W. Z.; Ehrat, F.; Botari, T.; Moudrakovski, I.; Simon, T.; Duppel, V.; Medina, E.; Stolarczyk, J. K.; Feldmann, J.; et al. Urea-Modified Carbon Nitrides: Enhancing Photocatalytic Hydrogen Evolution by Rational Defect Engineering. Advanced Energy Materials 2017, 7 (12), 1602251.
57. Lotsch, B. V.; Schnick, W. From triazines to heptazines: Novel nonmetal tricyanomelaminates as precursors for graphitic carbon nitride materials. Chemistry of Materials 2006, 18 (7), 1891-1900.
58. Jürgens, B.; Irran, E.; Senker, J.; Kroll, P.; Müller, H.; Schnick, W. Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies. Journal of the American Chemical Society 2003, 125 (34), 10288-10300.
59. Horvath-Bordon, E.; Kroke, E.; Svoboda, I.; Fuess, H.; Riedel, R. Potassium melonate, K3[C6N7(NCN)3]·5H2O, and its potential use for the synthesis of graphite-like C3N4 materials. New Journal of Chemistry 2005, 29 (5), 693-699.
60. Deng, Q. H.; Li, H. P.; Hu, W. X.; Hou, W. G. Stability and Crystallinity of Sodium Poly(Heptazine Imide) in Photocatalysis. Angewandte Chemie-International Edition 2023, 62 (47), e202314213.
61. Yin, H. Q.; Wang, Z. R.; Lai, X.; Wang, Y.; Tang, Z. F. Optimum design and key thermal property of NaCl-KCl-CaCl2 eutectic salt for ultra-high-temperature thermal energy storage. Solar Energy Materials and Solar Cells 2022, 236, 111541.
62. Burrow, J. N.; Pender, J. P.; Guerrera, J. V.; Wygant, B. R.; Eichler, J. E.; Calabro, D. C.; Mullins, C. B. CaCl-Activated Carbon Nitride: Hierarchically Nanoporous Carbons with Ultrahigh Nitrogen Content for Selective CO2 Adsorption. Acs Applied Nano Materials 2020, 3 (6), 5965-5977.
63. Sattler, A.; Schnick, W. On the Formation and Decomposition of the Melonate Ion in Cyanate and Thiocyanate Melts and the Crystal Structure of Potassium Melonate, K3[C6N7(NCN)3]. European Journal of Inorganic Chemistry 2009, 2009 (33), 4972-4981.
64. Alwin, E.; Nowicki, W.; Wojcieszak, R.; Zielinski, M.; Pietrowski, M. Elucidating the structure of the graphitic carbon nitride nanomaterials X-ray photoelectron spectroscopy and X-ray powder diffraction techniques. Dalton Transactions 2020, 49 (36), 12805-12813.
65. Lau, V. W. H.; Lu, C. F.; Wijaya, N. P.; Lutan, M. Can X-ray Photoelectron Spectroscopy Characterize Photocatalytically Relevant Defects in Graphitic Carbon Nitride? Re-examining Peak Assignment and Quantification Using Model Compounds. Chemistry of Materials 2024, 36 (19), 9762–9774.
66. Kasap, H.; Caputo, C. A.; Martindale, B. C. M.; Godin, R.; Lau, V. W. H.; Lotsch, B. V.; Durrant, J. R.; Reisner, E. Solar-Driven Reduction of Aqueous Protons Coupled to Selective Alcohol Oxidation with a Carbon Nitride-Molecular Ni Catalyst System. Journal of the American Chemical Society 2016, 138 (29), 9183-9192.
67. Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 2015, 87 (9-10), 1051-1069.
68. Sankar, M.; Nowicka, E.; Carter, E.; Murphy, D. M.; Knight, D. W.; Bethell, D.; Hutchings, G. J. The benzaldehyde oxidation paradox explained by the interception of peroxy radical by benzyl alcohol. Nature Communications 2014, 5, 3332.
69. Huo, T. T.; Deng, Q. H.; Yu, F.; Wang, G. A.; Xia, Y. G.; Li, H. P.; Hou, W. G. Ion-Induced Synthesis of Crystalline Carbon Nitride Ultrathin Nanosheets from Mesoporous Melon for Efficient Photocatalytic Hydrogen Evolution with Synchronous Highly Selective Oxidation of Benzyl Alcohol. Acs Applied Materials & Interfaces 2022, 14 (11), 13419-13430.
70. Xiao, X. Y.; Jiang, J.; Zhang, L. Z. Selective oxidation of benzyl alcohol into benzaldehyde over semiconductors under visible light: The case of Bi12O17Cl2 nanobelts. Applied Catalysis B-Environmental 2013, 142, 487-493.
71. Su, F. Z.; Mathew, S. C.; Lipner, G.; Fu, X. Z.; Antonietti, M.; Blechert, S.; Wang, X. C. mpg-C3N4-Catalyzed Selective Oxidation of Alcohols Using O2 and Visible Light. Journal of the American Chemical Society 2010, 132 (46), 16299-16301.
72. Savateev, A.; Dontsova, D.; Kurpil, B.; Antonietti, M. Highly crystalline poly(heptazine imides) by mechanochemical synthesis for photooxidation of various organic substrates using an intriguing electron acceptor - Elemental sulfur. Journal of Catalysis 2017, 350, 203-211.
73. Berger, U.; Schnick, W. Syntheses, Crystal-Structures, and Vibrational Spectroscopic Properties of MgCN2, SrCN2, and BaCN2. Journal of Alloys and Compounds 1994, 206 (2), 179-184.