| 研究生: |
侯良靖 Hou, Liang-Ching |
|---|---|
| 論文名稱: |
噴嘴式卡車減阻裝置在車體受側風吹襲下受力情形的研究 The Study of Gust Force on a Truck Using Corner Nozzle Flow Drag Reduction Device |
| 指導教授: |
陳世雄
Chen, Shin-Hsiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 卡車 、減阻 、噴嘴式減阻裝置 、風洞 、空氣阻力 、側向力 、偏航矩 |
| 外文關鍵詞: | truck, drug reduction, corner nozzle, wind tunnel, aerodynamic drag, side force, yawing moment |
| 相關次數: | 點閱:123 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在石化能源的消耗中,交通運輸是能源消耗重要的一環,而中大型卡車運輸則是交通運輸中不可或缺的部分,然而中大型卡車因外型上的限制,導致在行駛時會產生極大的空氣阻力,2009年蔡明育[28]對於減少卡車阻力的噴嘴式卡車減阻研究裝置進行了一系列風洞測試,了解噴嘴式卡車減阻裝置在1/8的GCM卡車縮尺模型上的運作效能。該研究證實了噴嘴式卡車減阻裝置在卡車面對正向風場時能達到一定程度的減阻效果,導流角45~60度面積比1.4~2的減阻裝置有較好的減阻效果,而本研究則為該研究的延伸,探討在側風條件下,噴嘴式減阻裝置的運作情形。
本研究採用同蔡明育實驗的模型,針對車體在受到0~14度來向風場時,車體軸向、側向,以及偏航矩等的力場變化情形進行量測。結果發現該裝置在側風風場條件下,不僅能減少卡車軸向受力,對於卡車側向受力和偏航矩都有改善的效果,其在軸向阻力的部分,低側風角0°~10°時約能減少6~10%的減阻效果,在較高側風角12°~14°時還能維持約3%的減阻效果,而在側向受力的部分,則可達到5~7%左右的減力效果,偏航矩的部分在8°以下側風角時約有50~80%的改善效果,而在10°以上時仍維持有20~45%改善效果。因此該減阻裝置不僅能使卡車能源使用上能更有效率,更能提高卡車行駛時的安全性。
Transportation is an important part of the global energy consumption, and truck is one big group of the transportation. The shape of truck will induce big drag, so how to reduce the drag being a big issue of energy economized research. Tsai [28] performed a research of corner nozzle flow effect on the truck drag reduction. A 1/8 scaled GCM truck model was used. It was found that the corner nozzle flow has significant effect on truck drag reduction. In 0° yawing angle test, the nozzle with guide angle 45° and 60° and outlet to inlet area ratio around 1.4~2 showed better drag reduction effect. The present study is an extension to the research of Tsai to further understand the aerodynamic effects of corner nozzle flow when the truck is in crosswind flow situation.
The same truck model was used to study experimentally the drag, side force, and yawing moment at crosswind angles 0°~14°. The nozzle effectiveness on the drag for low crosswind angle (0°~10°) was around 6%~10%, and at crosswind angles 12°~14° the drag reduction was around 3%. The side force decreased by about 5~7%. And the yawing moment was reduced by about 50~80% at crosswind angles 0°~8°, and a reduction of about 20~45% at crosswind angles 10°~14°. Overall the results showed that the corner nozzle not only can reduce the drag effectively, but also can decrease the side force and yawing moment significantly for safer driving.
[1] Wood R. M., “Impact of Advanced Aerodynamic Technology on Transportation Energy Consumption,” SAE Transactions, Vol. 113, Number 6, pp. 854-874, 2004.
[2] U.S. Department of Energy, http://www.doe.gov, December 2002.
[3] U.S. Department of Energy, Energy Information Administration, http://www.eia.doe.gov/oiaf/aeo, December 2002.
[4] U.S. Department of Energy, Oak Ridge National Laboratory,http://www.ornl.gov, December 2002.
[5] U.S. Department of Transportation, “Traffic Safety Facts 2000; Large Trucks,” Publication DOTHS 809 325. NHTSA, U.S. Department of Transportation, 2000.
[6] Transport Canada, "Canadian Motor Vehicle Traffic and Collision Statistics; 2001," Publication ISBN 0-662-67110-4, Transport Canada, 2003.
[7] Guilmineau, E. and Chometon, F., "Experimental and Numerical Analysis of the Effect of Side Wind on a Simplified Car Model," SAE Technical Paper 2007-01-0108, 2007.
[8] Berta, C., and Bonis, B., “Experimental Research of Ideal Aerodynamic Characteristics for Industrial Vehicle,” SAE Paper 801402, 1980.
[9] Hucho, W. H.,“Aerodynamics of Road Vehicles”, Butterworth-Heinemann, UK, 1987.
[10] Modi, V. J., Hill, S. S., and Yokomizo, T., “Drag Reduction of Trucks Through Boundary-Layer Control”, Journal of Wind Engineering and Industrial Aerodynamics, Volumes 54-55, pp. 583-594, 1995.
[11] Bearman, P. W., “Investigation of the Flow Behind a Two-Dimensional Model with Blunt Trailing Edge and Fitted with Splitter Plates,” J. Fluid Mechanics, Vol. 21, pp. 241-255, 1965.
[12] Bearman, P. W., “Investigation into the Effects of Base Bleed on the Flow Behind a Two – Dimensional Model with a Blunt Trailing Edge,” AGARD Conf. Proc. No. 4, Separated Flows, Part 2, pp. 479-507, 1966.
[13] McCallen, R., Couch, R., Hsu, J., Browand, F., Hammache, M., Loenard, A., Brady, M., Salari, K., Rutledtge, W., Ross, J., Storms, B., Heineck, J. T., Driver, D., Bell, J., and Zilliac, G., “Progress in Reducing Aerodynamic Drag for Higher Efficiency of Heavy Duty Trucks (Class 7-8) ,” SAE Government Industry Meeting, Washington, April 26-28, 1999.
[14] Storms, B. L., Satran, D. R., Heineck, J. T., and Stephen, M. W., “A Study of Reynolds Number Effects and Drag-Reduction Concepts on a Generic Tractor-Trailer,” AIAA paper no. 2251, 2004.
[15] Hucho, W.-H., Emmelman, H.-J.,”Aerodynamische Formoptimierung, ein Weg zur Stegigerung der Wirtschaftlichkeit von Nutzfahrzeugen,” Fortschr.-Berichte der VDI-Zeitschriften, Series 12, No. 31, 1977.
[16] Willson, F., and Hildebrand, E., “Lateral Forces on Heavy Trucks – Contributions from Wind”. Paper 07-0444, Transportation Group. Canada: University of New Brunswick.
[17] Summerfield, S., and Kosior, J., “Simulation Of Heavy Trucks In Inclement Weather ," 2001: A Transportation Odyssey. Canadian Transportation Research Forum. Proceedings of the 36th Annual Conference, Vancouver, Canada, 2001.
[18] Favre, T., "Numerical Investigation Of Unsteady Crosswind Aerodynamics For Ground Vehicles," Licentiate thesis, Department of Aeronautical and Vehicle Engineering, Royal Institute of Technology, 2009.
[19] McCallen, R. C., Salari, K., Ortega, J., LLNL; DeChant, L. J., Roy, C. J., Payne , J. L., Hassan, B., SNL; Pointer, W. D., ANL; Browand, F., Hammache, M., Hsu T.-Y., USC; Ross, J., Satran, D., Heineck, J.T., Walker, S., Yaste, D., NASA Ames; Englar, R., GTRI; Leonard, A., Rubel, M., Chatelain, P., and Caltech,. "FY2003 Annual Report: DOE Project on Heavy Vehicle Aerodynamic Drag," 2003.
[20] McCallen, R., Salari, K., Ortega, J., LLNL; Browand, F., Hammache, M., Hsu, T., University of Southern California; Leonard, A., Chatelain, P. and Rubel, M., California Institute of Technology; Roy, C., Auburn University; DeChant, L., Hassan, B., Sandia National Laboratories; Ross, J., Satran, D., Walker, S., Heineck, J.T., Yaste, D., Storms, B., NASA Ames Research Center; Englar, R., GTRI; Pointer, D., Argonne National Laboratory. "DOE’s Effort to Reduce Truck Aerodynamic Drag –Joint Experiments and Computations Lead to Smart Design,” 2004.
[21] Storms, B. L., Satran, D. R., Heineck, J. T., and Walker S. M., 2006, “A Summary of the Experimental Results for a Generic Tractor-Trailer in the Ames Research Center 7-by 10-Foot and 12-Foot Wind Tunnels,” NASA Ames Research Center, NASA/TM-2006-213489.
[22] Fox, R W., McDonald, A. T., and Pritchard, P. J., “Introduction to Fluid Mechanics , sixth edition,” John Wiley & Sons, Inc., 2003.
[23] Kim, K. C., Ji, H. S., and Seong, S. H., “Flow Structure Around a 3-D Rectangular Prism in a Turbulent Boundary Layers,” Journal of Wind Engineering and Industrial Aerodynamics, November, 2002.
[24] Wood, R. M., and Bauer, S. X. S., “Simple and Low-Cost Aerodynamic Drag Reduction Devices for Tractor-Trailer Trucks,” SAE transactions, Vol. 112, No. 2, pp. 143-160, 2003.
[25] Rylski, S., “Road Vehicle Aerodynamics,” second edition, Pentech Press, UK, 1984.
[26] Salari, K., “Heavy Vehicle Drag Reduction Devices: Computational Evaluation & Design,” DOE Heavy Vehicle Systems Review, April 18-20, 2006.
[27] Mathieu, R., Patrick, G., and Azeddine, K., “Analysis and Control of the Near-Wake Flow Over a Square-Back Geometry,” AIAA paper no. 3336, 2006.
[28] 蔡明育, “卡車尾端角落噴嘴氣流對減少阻力的研究”, 國立成功大學碩士論文, 2009 年7 月.
[29] 蘇家錦, “卡車之計算模擬與流場分析”, 國立成功大學碩士論文, 2012 年7 月.
[30] “貨車導風板對風阻及油耗之影響”, 車量耗能研究網站.
[31] 林國楨, “貨車導風板風阻對油耗的影響", 省能運具推廣說明會車輛節能研討會, 2003年9月16日.
[32] 李添財, “汽車空氣動力學", 全華科技圖書股份有限公司, 1999 年1月.